Due to its atomic thickness and insulating nature, hexagonal boron nitride (h-BN) is considered to be one of the most promising substrates and gate insulating materials for two-dimensional electronic devices. In this study, polarized Raman spectroscopy was employed to uncover the effects of polarized incident light on the optical properties of h-BN phonon modes. Our measured polarization-resolved Raman spectra indicate that the symmetrical nature and the broken symmetry of degenerate phonon modes from h-BN are induced by linearly and elliptically polarized light, respectively. Moreover, a helicity exchange was observed between the excitation of circularly polarized light and the resulting opposite circular polarization of scattered light from h-BN. The measured phenomena were modeled on the basis of Raman tensors and Jones calculus to eventually calculate the amplitude coefficients of two orthogonal in-plane phonon modes. Hence, our experimental study provides a holistic understanding of the vibrational modes in h-BN, which is expected to enhance the knowledge of physical mechanisms such as heat capacity and thermal and electrical conductivities of this layered material.

1.
S. N.
Monteiro
,
A. L. D.
Skury
,
M. G.
de Azevedo
, and
G. S.
Bobrovnitchii
, “
Cubic boron nitride competing with diamond as a superhard engineering material—An overview
,”
J. Mater. Res. Technol.
2
,
68
(
2013
).
2.
N.
Izyumskaya
,
D. O.
Demchenko
,
S.
Das
,
Ü.
Özgür
,
V.
Avrutin
, and
H.
Morkoç
, “
Recent development of boron nitride towards electronic applications
,”
Adv. Electron. Mater.
3
,
1600485
(
2017
).
3.
K. K.
Kim
,
A.
Hsu
,
X.
Jia
,
S. M.
Kim
,
Y.
Shi
,
M.
Dresselhaus
,
T.
Palacios
, and
J.
Kong
, “
Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices
,”
ACS Nano
6
,
8583
(
2012
).
4.
C. R.
Dean
,
A. F.
Young
,
I.
Meric
,
C.
Lee
,
L.
Wang
,
S.
Sorgenfrei
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Kim
, and
K.
Shepard
, “
Boron nitride substrates for high-quality graphene electronics
,”
Nat. Nanotechnol.
5
,
722
(
2010
).
5.
A.
Nag
,
K.
Raidongia
,
K. P. S. S.
Hembram
,
R.
Datta
,
U. V.
Waghmare
, and
C. N. R.
Rao
, “
Graphene analogues of BN: Novel synthesis and properties
,”
ACS Nano
4
,
1539
(
2010
).
6.
Y.
Kubota
,
K.
Watanabe
,
O.
Tsuda
, and
T.
Taniguchi
, “
Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure
,”
Science
317
,
932
(
2007
).
7.
A. K.
Sood
,
J.
Menéndez
,
M.
Cardona
, and
K.
Ploog
, “
Resonance Raman scattering by confined LO and TO phonons in GaAs-AlAs superlattices
,”
Phys. Rev. Lett.
54
,
2111
(
1985
).
8.
P. C.
Eklund
,
J. M.
Holden
, and
R. A.
Jishi
, “
Vibrational modes of carbon nanotubes; Spectroscopy and theory
,”
Carbon
33
,
959
(
1995
).
9.
D.
González-García
,
D.
Giordano
,
J. K.
Russell
, and
D. B.
Dingwell
, “
A Raman spectroscopic tool to estimate chemical composition of natural volcanic glasses
,”
Chem. Geol.
556
,
119819
(
2020
).
10.
X.
Cong
,
X.-L.
Liu
,
M.-L.
Lin
, and
P.-H.
Tan
, “
Application of Raman spectroscopy to probe fundamental properties of two-dimensional materials
,”
npj 2D Mater. Appl.
4
,
13
(
2020
).
11.
R. V.
Gorbachev
 et al, “
Hunting for monolayer boron nitride: Optical and Raman signatures
,”
Small
7
,
465
(
2011
).
12.
M.
Krečmarová
,
D.
Andres-Penares
,
L.
Fekete
,
P.
Ashcheulov
,
A.
Molina-Sánchez
,
R.
Canet-Albiach
,
I.
Gregora
,
V.
Mortet
,
J. P.
Martínez-Pastor
, and
J. F.
Sánchez-Royo
, “
Optical contrast and Raman spectroscopy techniques applied to few-layer 2D hexagonal boron nitride
,”
Nanomaterials
9
,
1047
(
2019
).
13.
I.
Stenger
,
L.
Schué
,
M.
Boukhicha
,
B.
Berini
,
B.
Plaçais
,
A.
Loiseau
, and
J.
Barjon
, “
Low frequency Raman spectroscopy of few-atomic-layer thick HBN crystals
,”
2D Mater.
4
,
31003
(
2017
).
14.
K.
Zhang
,
Y.
Feng
,
F.
Wang
,
Z.
Yang
, and
J.
Wang
, “
Two dimensional hexagonal boron nitride (2D-HBN): Synthesis, properties and applications
,”
J. Mater. Chem. C
5
,
11992
(
2017
).
15.
T. M. G.
Mohiuddin
 et al, “
Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, grüneisen parameters, and sample orientation
,”
Phys. Rev. B
79
,
205433
(
2009
).
16.
T.
Azuhata
,
T.
Sota
,
K.
Suzuki
, and
S.
Nakamura
, “
Polarized Raman spectra in GaN
,”
J. Phys.: Condens. Matter
7
,
L129
(
1995
).
17.
T.-D.
Huang
,
K. B.
Simbulan
,
Y.-F.
Chiang
,
Y.-W.
Lan
, and
T.-H.
Lu
, “
Symmetry breaking of in-plane Raman scattering by elliptically polarized light in MoS2
,”
Phys. Rev. B
100
,
195414
(
2019
).
18.
S.-Y.
Chen
,
C.
Zheng
,
M. S.
Fuhrer
, and
J.
Yan
, “
Helicity-resolved Raman scattering of MoS2, MoSe2, WS2, and WSe2 atomic layers
,”
Nano Lett
15
,
2526
(
2015
).
19.
H.
Oh
,
J.
Jo
,
Y.
Tchoe
,
H.
Yoon
,
H.
Hwi Lee
,
S.-S.
Kim
,
M.
Kim
,
B.-H.
Sohn
, and
G.-C.
Yi
, “
Centimeter-sized epitaxial h-BN films
,”
NPG Asia Mater.
8
,
e330
(
2016
).
20.
I.
Calizo
,
W.
Bao
,
F.
Miao
,
J.
Lau
, and
A.
Balandin
, “
The effect of substrates on the Raman spectrum of graphene: Graphene on-sapphire and graphene-on-glass
,”
Appl. Phys. Lett.
91
,
201904
(
2007
).
21.
N.
Basu
,
M. S.
Satya Bharathi
,
M.
Sharma
,
K.
Yadav
,
A. S.
Parmar
,
V. R.
Soma
, and
J.
Lahiri
, “
Large area few-layer hexagonal boron nitride as a Raman enhancement material
,”
Nanomaterials
11
,
622
(
2021
).
22.
S.
Hou
,
M. D.
Birowosuto
,
S.
Umar
,
M. A.
Anicet
,
R. Y.
Tay
,
P.
Coquet
,
B. K.
Tay
,
H.
Wang
, and
E. H. T.
Teo
, “
Localized emission from laser-irradiated defects in 2D hexagonal boron nitride
,”
2D Mater.
5
,
15010
(
2017
).
23.
P.
Spizzirri
,
J.
Fang
,
S.
Rubanov
,
E.
Gauja
, and
S.
Prawer
, “
Nano-Raman spectroscopy of silicon surfaces
,”
Mater. Forum
34
, 161–166 (
2010
).
24.
H.
Fröhlich
, “
Interaction of electrons with lattice vibrations
,”
Proc. R. Soc. London, Ser. A
215
,
291
(
1952
).

Supplementary Material

You do not currently have access to this content.