Various methods for controlling the in-plane propagation direction and topological transitions of phonon polaritons (PhPs) in anisotropic van der Waals (vdW) materials rely on using twisted vdW bi-layers or the hybridization of anisotropic vdW materials with other functional materials such as graphene, hBN, and SiC. At the same time, visibly transparent SiC- and SiO2-based metastructures have potential to solve the problem of daytime radiative cooling. Here, as a unique method, we design a bifunctional α-MoO3-integrated SiC metasurface for effectively controlling the in-plane propagation direction of α-MoO3 PhPs. The control is enabled by a topological transition in the PhP dispersion, which is achieved by proper arrangements of the SiC meta-atoms. The proposed functionality of the designed metasurface is beneficial for the mid-infrared in-plane coupling between quantum emitters and heat management. Moreover, the α-MoO3SiC metasurface functions as an efficient visibly transparent daytime radiative cooler.

1.
J. D.
Caldwell
,
L.
Lindsay
,
V.
Giannini
,
I.
Vurgaftman
,
T. L.
Reinecke
,
S. A.
Maier
, and
O. J.
Glembocki
, “
Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons
,”
Nanophotonics
4
,
44
(
2015
).
2.
C. R.
Gubbin
,
S.
De Liberato
, and
T. G.
Folland
, “
Surface phonon polaritons for infrared optoelectronics
,”
J. Appl. Phys.
131
,
030901
(
2022
).
3.
J. D.
Caldwell
,
A. V.
Kretinin
,
Y.
Chen
 et al, “
Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride
,”
Nat. Commun.
5
,
5221
(
2014
).
4.
L.
Peining
,
I.
Dolado
,
F. J.
Alfaro-Mozaz
 et al, “
Infrared hyperbolic metasurface based on nanostructured van der Waals materials
,”
Science
359
,
892
(
2018
).
5.
W.
Ma
,
P.
Alonso-González
,
S.
Li
 et al, “
In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal
,”
Nature
562
,
557
562
(
2018
).
6.
Z.
Zheng
,
N.
Xu
,
S. L.
Oscurato
 et al, “
A mid-infrared biaxial hyperbolic van der Waals crystal
,”
Sci. Adv.
5
,
eaav8690
(
2019
).
7.
J.
Duan
,
G.
Álvarez-Pérez
,
A. I. F.
Tresguerres-Mata
 et al, “
Planar refraction and lensing of highly confined polaritons in anisotropic media
,”
Nat. Commun.
12
,
4325
(
2021
).
8.
T.
Zhang
,
C.
Zheng
,
Z. N.
Chen
, and
C.-W.
Qium
, “
negative reflection and negative refraction in biaxial van der Waals materials
,”
Nano Lett.
22
,
5607
5614
(
2022
).
9.
G.
Álvarez-Pérez
,
J.
Duan
,
J.
Taboada-Gutiérrez
 et al, “
Negative reflection of nanoscale-confined polaritons in a low-loss natural medium
,”
Sci. Adv.
8
,
eabp8486
(
2022
).
10.
Q.
Zhang
,
Q.
Ou
,
G.
Si
 et al, “
Unidirectionally excited phonon polaritons in high-symmetry orthorhombic crystals
,”
Sci. Adv.
8
,
eabn9774
(
2022
).
11.
Y.
Wu
,
Q.
Ou
,
Y.
Yin
 et al, “
Chemical switching of low-loss phonon polaritons in α-MoO3 by hydrogen intercalation
,”
Nat. Commun.
11
,
2646
(
2020
).
12.
G.
Hu
,
Q.
Ou
,
G.
Si
,
Y.
Wu
,
J.
Wu
,
Z.
Dai
,
A.
Krasnok
,
Y.
Mazor
,
Q.
Zhang
,
Q.
Bao
,
C.-W.
Qiu
, and
A.
Alù
, “
Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers
,”
Nature
582
,
209
213
(
2020
).
13.
G.
Deng
,
S.
Abedini Dereshgi
,
X.
Song
,
C.
Wei
, and
K.
Aydin
, “
Phonon-polariton assisted broadband resonant absorption in anisotropic α-phase MoO3 nanostructures
,”
Phys. Rev. B
102
,
035408
(
2020
).
14.
G.
Álvarez-Pérez
,
A.
González-Morán
,
N.
Capote-Robayna
,
K. V.
Voronin
,
J.
Duan
,
V. S.
Volkov
,
P.
Alonso-González
, and
A. Y.
Nsikitin
, “
Active tuning of highly anisotropic phonon polaritons in van der Waals crystal slabs by gated graphene
,”
ACS Photonics
9
,
383
(
2022
).
15.
Y.
Zeng
,
Q.
Ou
,
L.
Liu
,
C.
Zheng
,
Z.
Wang
,
Y.
Gong
,
X.
Liang
,
Y.
Zhang
,
G.
Hu
,
Z.
Yang
,
C.-W.
Qiu
,
Q.
Bao
,
H.
Chen
, and
Z.
Dai
, “
Tailoring topological transitions of anisotropic polaritons by interface engineering in biaxial crystals
,”
Nano Lett.
22
,
4260
4268
(
2022
).
16.
F. L.
Ruta
,
B. S. Y.
Kim
,
Z.
Sun
,
D. J.
Rizzo
,
A. S.
McLeod
,
A.
Rajendran
,
S.
Liu
,
A. J.
Millis
,
J. C.
Hone
, and
D. N.
Basov
, “
Surface plasmons induce topological transition in graphene/α-MoO3 heterostructures
,”
Nat. Commun.
13
,
3719
(
2022
).
17.
H.
Hu
,
N.
Chen
,
H.
Teng
,
R.
Yu
,
Y.
Qu
,
J.
Sun
,
M.
Xue
,
D.
Hu
,
B.
Wu
,
C.
Li
,
J.
Chen
,
M.
Liu
,
Z.
Sun
,
Y.
Liu
,
P.
Li
,
S.
Fan
,
F. J.
García de Abajo
, and
Q.
Dai
, “
Doping-driven topological polaritons in graphene/α-MoO3 heterostructures
,”
Nat. Nanotechnol.
17
,
940
946
(
2022
).
18.
S.
Abedini Dereshgi
,
M. C.
Larciprete
,
M.
Centini
,
A. A.
Murthy
,
K.
Tang
,
J.
Wu
,
V. P.
Dravid
, and
K.
Aydin
, “
Tuning of optical phonons in α-MoO3−VO2 multilayers
,”
ACS Appl. Mater. Interfaces
13
,
48981
(
2021
).
19.
J.
Duan
,
G.
Álvarez-Pérez
,
K. V.
Voronin
 et al, “
Enabling propagation of anisotropic polaritons along forbidden directions via a topological transition
,”
Sci. Adv.
7
,
eabf2690
(
2021
).
20.
Q.
Zhang
,
Q.
Ou
,
G.
Hu
,
J.
Liu
,
Z.
Dai
,
M. S.
Fuhrer
,
Q.
Bao
, and
C.-W.
Qiu
, “
Hybridized hyperbolic surface phonon polaritons at α-MoO3 and polar dielectric interfaces
,”
Nano Lett.
21
,
3112
–−
3119
(
2021
).
21.
Y.
Wu
,
J.
Duan
,
W.
Ma
,
Q.
Ou
,
P.
Li
,
P.
Alonso-González
,
J. D.
Caldwell
, and
Q.
Bao
, “
Manipulating polaritons at the extreme scale in van der Waals materials
,”
Nat. Rev. Phys.
4
,
578
594
(
2022
).
22.
Q.
Zhang
,
G.
Hu
,
W.
Ma
,
P.
Li
,
A.
Krasnok
,
R.
Hillenbrand
,
A.
Alù
, and
C.-W.
Qiu
, “
Interface nano-optics with van der Waals polaritons
,”
Nature
597
,
187
195
(
2021
).
23.
H.
Hajian
,
I. D.
Rukhlenko
,
G. W.
Hanson
,
T.
Low
,
B.
Butun
, and
E.
Ozbay
, “
Tunable plasmon-phonon polaritons in anisotropic 2D materials on hexagonal boron nitride
,”
Nanophotonics
9
,
3909
(
2020
).
24.
H.
Hajian
,
I. D.
Rukhlenko
,
G. W.
Hanson
, and
E.
Ozbay
, “
Hybrid surface plasmon polaritons in graphene coupled anisotropic van der Waals material waveguides
,”
J. Phys. D: Appl. Phys.
54
,
455102
(
2021
).
25.
H.
Hajian
,
I. D.
Rukhlenko
,
G. W.
Hanson
, and
E.
Ozbay
, “
Anisotropic absorber and tunable source of MIR radiation based on a black phosphorus-SiC metasurface
,”
Photonics Nanostruct.-Fundam. Appl.
50
,
101020
(
2022
).
26.
D. G.
Baranov
,
Y.
Xiao
,
I. A.
Nechepurenko
,
A.
Krasnok
,
A.
Alù
, and
M. A.
Kats
, “
Nanophotonic engineering of far-field thermal emitters
,”
Nat. Mater.
18
,
920
(
2019
).
27.
D.
Zhao
,
A.
Aili
,
Y.
Zhai
,
S.
Xu
,
G.
Tan
,
X.
Yin
, and
R.
Yang
, “
Radiative sky cooling: Fundamental principles, materials, and applications
,”
Appl. Phys. Rev.
6
,
021306
(
2019
).
28.
E.
Rephaeli
,
A. P.
Raman
, and
S.
Fan
, “
Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling
,”
Nano Lett.
13
,
1457
(
2013
).
29.
A. P.
Raman
,
M.
Abou Anoma
,
L.
Zhu
,
E.
Rephaeli
, and
S.
Fan
, “
Passive radiative cooling below ambient air temperature under direct sunlight
,”
Nature
515
,
540
(
2014
).
30.
M.
Muntasir Hossain
,
B.
Jia
, and
M.
Gu
, “
A metamaterial emitter for highly efficient radiative cooling
,”
Adv. Opt. Mater.
3
,
1047
(
2015
).
31.
J.
Mandal
,
Y.
Fu
,
A. C.
Overvig
,
M.
Jia
,
K.
Sun
,
N. N.
Shi
,
H.
Zhou
,
X.
Xiao
,
N.
Yu
, and
Y.
Yang
, “
Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling
,”
Science
362
,
315
(
2018
).
32.
L.
Zhou
,
H.
Song
,
J.
Liang
,
M.
Singer
,
M.
Zhou
,
E.
Stegenburgs
,
N.
Zhang
,
C.
Xu
,
T.
Ng
,
Z.
Yu
,
B.
Ooi
, and
Q.
Gan
, “
A polydimethylsiloxane-coated metal structure for all-day radiative cooling
,”
Nat. Sustainable
2
,
718
724
(
2019
).
33.
T.
Wang
,
Y.
Wu
,
L.
Shi
,
X.
Hu
,
M.
Chen
, and
L.
Wu
, “
A structural polymer for highly efficient all-day passive radiative cooling
,”
Nat. Commun.
12
,
365
(
2021
).
34.
L.
Zhou
,
J.
Zhao
,
H.
Huang
,
F.
Nan
,
G.
Zhou
, and
Q.
Ou
, “
Flexible polymer photonic films with embedded microvoids for high-performance passive daytime radiative cooling
,”
ACS Photonics
8
,
3301
3307
(
2021
).
35.
A. R.
Gentle
and
G. B.
Smith
, “
Radiative heat pumping from the earth using surface phonon resonant nanoparticles
,”
Nano Lett.
10
,
373
(
2010
).
36.
L.
Zhu
,
A. P.
Raman
, and
S.
Fan
, “
Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
12282
(
2015
).
37.
Y.
Zhai
,
Y.
Ma
,
S. N.
David
,
D.
Zhao
,
R.
Lou
,
G.
Tan
,
R.
Yang
, and
X.
Yin
, “
Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling
,”
Science
355
,
1062
(
2017
).
38.
G. L.
Whitworth
,
J.
Jaramillo-Fernandez
,
J. A.
Pariente
,
P. D.
Garcia
,
A.
Blanco
,
C.
Lopez
, and
C. M.
Sotomayor-Torres
, “
Simulations of micro-sphere/shell 2D silica photonic crystals for radiative cooling
,”
Opt. Express
29
,
16857
(
2021
).
39.
K. C. S.
Ly
,
X.
Liu
,
X.
Song
,
C.
Xiao
,
P.
Wang
,
H.
Zhou
, and
T.
Fan
, “
A dual-mode infrared asymmetric photonic structure for all-season passive radiative cooling and heating
,”
Adv. Funct. Mater.
32
,
2203789
(
2022
).
40.
G. K.
Shirmanesh
,
R.
Sokhoyan
,
P. C.
Wu
, and
H. A.
Atwater
, “
Electro-optically tunable multifunctional metasurfaces
,”
ACS Nano
14
,
6912
(
2020
).
41.
42.
C. L.
Cortes
and
Z.
Jacob
, “
Super-Coulombic atom–atom interactions in hyperbolic media
,”
Nat. Commun.
8
,
14144
(
2017
).
43.
L.
Tranchant
,
S.
Hamamura
,
J.
Ordonez-Miranda
,
T.
Yabuki
,
A.
Vega-Flick
,
F.
Cervantes-Alvarez
,
J. J.
Alvarado-Gil
,
S.
Volz
, and
K.
Miyazaki
, “
Two-dimensional phonon polariton heat transport
,”
Nano Lett.
19
,
6924
6930
(
2019
).
44.
A.
Howes
,
J. R.
Nolen
,
J. D.
Caldwell
, and
J.
Valentine
, “
Near-unity and narrowband thermal emissivity in balanced dielectric metasurfaces
,”
Adv. Opt. Mater.
8
,
1901470
(
2020
).

Supplementary Material

You do not currently have access to this content.