Polycrystalline materials exhibit physical properties that are driven by both the interatomic crystallographic structure as well as the nature and density of structural defects. Crystallographic evolutions driven by phase transitions and associated twinning process can be observed in situ in three-dimensional (3D) using monochromatic synchrotron radiation at very high temperatures (over 1000 °C). This paper focuses on continuous measurements of the 3D-reciprocal space maps by high-resolution x-ray diffraction as a function of temperature along a phase transition process occurring between 1200 °C and room temperature. These high precision measurements allow observing the reciprocal space node splitting and the evolution of the diffuse scattering signal around that node as a function of temperature. The capability of this experimental method is illustrated by direct in situ high temperature measurements of the 3D splitting of a reciprocal space node due to phase transition recorded on dense pure zirconia polycrystals.

1.
U.
Müller
,
Symmetry Relationships Between Crystal Structures
(
Oxford University Press
,
2013
).
2.
A. P.
Levanyuk
and
A. S.
Sigov
,
Defects and Structural Phase Transitions
(
Gordon and Breach Science Publishers
,
1988
).
3.
R.
Mokso
,
P.
Cloetens
,
E.
Maire
,
W.
Ludwig
, and
J. Y.
Buffière
, “
Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics
,”
Appl. Phys. Lett.
90
,
144104
(
2007
).
4.
M. A.
Pfeifer
,
G. J.
Williams
,
I. A.
Vartanyants
,
R.
Harder
, and
I. K.
Robinson
, “
Three-dimensional mapping of a deformation field inside a nanocrystal
,”
Nature
442
,
63
66
(
2006
).
5.
J.
Villanova
,
R.
Daudin
,
P.
Lhuissier
,
D.
Jauffrès
,
S.
Lou
,
C. L.
Martin
,
S.
Labouré
,
R.
Tucoulou
,
G.
Martinez-Criado
, and
L.
Salvo
, “
Fast in situ 3D nanoimaging: A new tool for dynamic characterization in materials science
,”
Mater. Today
20
,
354
359
(
2017
).
6.
J.
Shin
,
T. W.
Cornelius
,
S.
Labat
,
F.
Lauraux
,
M. I.
Richard
,
G.
Richter
,
N. P.
Blanchard
,
D. S.
Gianolac
, and
O.
Thomas
, “
In situ Bragg coherent x-ray diffraction during tensile testing of an individual Au nanowire
,”
J. Appl. Crystallogr.
51
,
781
788
(
2018
).
7.
P. F.
Fewster
, “
Reciprocal space mapping
,”
Crit. Rev. Solid State Mater. Sci.
22
,
69
110
(
1997
).
8.
A.
Boulle
,
D.
Chaussende
,
L.
Latu-Romain
,
F.
Conchon
,
O.
Masson
, and
R.
Guinebretière
, “
X-ray diffuse scattering from stacking faults in thick 3C-Si C single crystals
,”
Appl. Phys. Lett.
89
,
091902
(
2006
).
9.
E.
Filippelli
,
G.
Chahine
, and
A.
Borbely
, “
Evaluation of intragranular strain and average dislocation density in single grains of a polycrystal using K-map scanning
,”
J. Appl. Crystallogr.
49
,
1814
1817
(
2016
).
10.
B.
Croes
,
F.
Cheynis
,
Y.
Zhang
,
C.
Voulot
,
K. D.
Dorkenoo
,
S.
Chrifi-Hertel
,
C.
Mocuta
,
M.
Texier
,
T. W.
Cornelius
,
O.
Thomas
,
M. I.
Richard
,
P.
Muller
,
S.
Curiotto
, and
F.
Leroy
, “
Ferroelectric nanodomains in epitaxial GeTe thin films
,”
Phys. Rev. Mater.
5
,
124415
(
2021
).
11.
S. P.
Zeuschner
,
M.
Mattern
,
J. E.
Pudell
,
A.
von Reppert
,
M.
Rössle
,
W.
Leitenberger
,
J.
Schwarzkopf
,
J. E.
Boschker
,
M.
Herzog
, and
M.
Bargheer
, “
Reciprocal space slicing: A time-efficient approach to femtosecond x-ray diffraction
,”
Struct. Dyn.
8
,
014302
(
2021
).
12.
H.
Palancher
,
P.
Goudeau
,
A.
Boulle
,
F.
Rieutord
,
V.
Favre-Nicolin
,
N.
Blanc
,
G.
Martin
,
J.
Fouet
, and
C.
Onofri
, “
Strain profiles in ion implanted ceramic polycrystals: An approach based on reciprocal-space crystal selection
,”
Appl. Phys. Lett.
108
,
031903
(
2016
).
13.
R.
Guinebretière
,
S.
Arnaud
,
N.
Blanc
,
N.
Boudet
,
E.
Thune
,
D.
Babonneau
, and
O.
Castelnau
, “
Full reciprocal-space mapping up to 2000 K under controlled atmosphere: The multipurpose QMAX furnace
,”
J. Appl. Crystallogr.
53
,
650
661
(
2020
).
14.
R.
Guinebretière
,
T.
Ors
,
V.
Michel
,
E.
Thune
,
M.
Huger
,
S.
Arnaud
,
N.
Blanc
,
N.
Boudet
, and
O.
Castelnau
, “
Coupling between elastic strains and phase transition in dense pure zirconia polycrystals
,”
Phys. Rev. Mater.
6
,
013602
(
2022
).
15.
M.
Smirnov
,
A.
Mirgorodsky
, and
R.
Guinebretière
, “
Phenomenological theory of lattice dynamics and polymorphism of ZrO2
,”
Phys. Rev. B
68
,
104106
(
2003
).
16.
E.
Kisi
,
Zirconia Engineering Ceramics: Old Challenges - New Ideas
(
Trans Tech Publications
,
Zürich, Switzerland
,
1998
).
17.
K.
Parlinski
,
Z. Q.
Li
, and
Y.
Kawazoe
, “
First principles determination of soft mode in cubic ZrO2
,”
Phys. Rev. Lett.
78
,
4063
4066
(
1997
).
18.
R. A.
Evarestov
and
Y. E.
Kitaev
, “
New insight on cubic-tetragonal-monoclinic phase transitions in ZrO2: Ab initio study and symmetry analysis
,”
J. Appl. Crystallogr.
49
,
1572
1578
(
2016
).
19.
S. H.
Guan
,
X. J.
Zhang
, and
Z. P.
Liu
, “
Energy landscape of zirconia phase transitions
,”
J. Am. Chem. Soc.
137
,
8010
8013
(
2015
).
20.
R.
Guinebretière
,
Z.
Oudjedi
, and
A.
Dauger
, “
Orthorhombic zirconia phase in ZrO2-MgAl2O4 composite materials
,”
Scr. Mater.
34
,
1039
1044
(
1996
).
21.
S.
Liu
,
W.
Hu
,
Y.
Zhang
,
J.
Xiang
,
F.
Web
,
B.
Xu
,
J.
He
,
D.
Yu
,
Y.
Tian
, and
Z.
Liu
, “
Metastable adaptative orthorhombic martensite in zirconia nanoparticles
,”
J. Appl. Cryst.
47
,
684
691
(
2014
).
22.
R.
Guinebretière
,
Z.
Oudjedi
,
B.
Soulestin
, and
A.
Dauger
, “
Semi-coherent zirconia inclusions in a ceramic matrix
,”
J. Mater. Res.
15
,
2482
2487
(
2000
).
23.
G.
Fadda
,
L.
Truskinovsky
, and
G.
Zanzotto
, “
Unified Laudau description of the tetragonal, orthorhombic and monoclinic phases of zirconia
,”
Phys. Rev. B
66
,
174107
(
2002
).
24.
M.
Hayakawa
,
N.
Kuntani
, and
M.
Oka
, “
Structural study on the tetragonal to monoclinic transformation in arc-melted ZrO2-2mol.% Y2O3—I. Experimental observations
,”
Acta Metall.
37
,
2223
2228
(
1989
).
25.
M.
Humbert
,
N.
Gey
,
C.
Patapy
,
E.
Joussein
,
M.
Huger
,
R.
Guinebretière
,
T.
Chotard
, and
A.
Hazotte
, “
Identification and orientation determination of parent cubic domains from EBSD maps of monoclinic pure zirconia
,”
Scr. Mater.
63
,
411
414
(
2010
).
26.
C.
Patapy
,
M.
Huger
,
T.
Chotard
,
R.
Guinebretiere
,
N.
Gey
,
A.
Hazotte
, and
M.
Humbert
, “
Solidification structure in pure zirconia liquid molten phase
,”
J. Eur. Ceram. Soc.
33
,
259
268
(
2013
).
27.
T.
Ors
,
F.
Gouraud
,
V.
Michel
,
M.
Huger
,
N.
Gey
,
J. S.
Micha
,
O.
Castelnau
, and
R.
Guinebretière
, “
Huge local elastic strains in bulk nanostructured pure zirconia materials
,”
Mater. Sci. Eng. A
806
,
140817
(
2021
).
28.
G. A.
Chahine
,
N.
Blanc
,
S.
Arnaud
,
F.
de Geuser
,
R.
Guinebretière
, and
N.
Boudet
, “
Advanced non-destructive in situ characterization of metals with the French Collaborating Research Group D2AM/BM02 beamline at the European Synchrotron Radiation Facility
,”
Metals
9
,
352
(
2019
).
29.
M.
Mamivand
,
M. A.
Zaeem
,
H.
EL Kadiri
, and
L. Q.
Chen
, “
Phase field modeling of the tetragonal-to-monoclinic phase transformation in zirconia
,”
Acta Mater.
61
,
5223
(
2013
).
30.
T. R.
Welberry
,
Diffuse X-Ray Scattering and Models of Disorder
(
Oxford University Press
,
2004
).

Supplementary Material

You do not currently have access to this content.