We build a model to determine the dependency of near-field heat flux on bias voltage using the metal–oxide–semiconductor structures considering gradient distribution of dielectric function. Quantitative dependency of near-field heat flux exchanged by two biased metal–oxide–semiconductor structures on bias voltage is established. The distribution of carrier density and the resultant dielectric function in the semiconductor layer caused by the bias are determined. The corresponding near-field heat flux is calculated using an effective multilayer model. Significant tuning performance is demonstrated, which is due to the increase or decrease in high-frequency surface polariton states induced by the injection or extraction of major carriers. This work deepens the understanding of electrical control of near-field heat transfer with metal–oxide–semiconductor structures, promising for nanoscale thermal management devices and thermal circuits.

1.
H.
Demiryont
and
D.
Moorehead
,
Sol. Energy Mater. Sol. Cells
93
(
12
),
2075
(
2009
).
2.
A.
Teissier
,
J.-P.
Dudon
,
P.-H.
Aubert
,
F.
Vidal
,
S.
Remaury
,
J.
Crouzet
, and
C.
Chevrot
,
Sol. Energy Mater. Sol. Cells
99
,
116
(
2012
).
3.
A.
Hendaoui
,
N.
Émond
,
M.
Chaker
, and
É.
Haddad
,
Appl. Phys. Lett.
102
(
6
),
061107
(
2013
).
4.
N.
Athanasopoulos
and
N. J.
Siakavellas
,
Sci. Rep.
5
,
17682
(
2015
).
5.
H.
Kim
,
K.
Cheung
,
R. C. Y.
Auyeung
,
D. E.
Wilson
,
K. M.
Charipar
,
A.
Pique
, and
N. A.
Charipar
,
Sci. Rep.
9
,
11329
(
2019
).
6.
A. M.
Morsy
,
M. T.
Barako
,
V.
Jankovic
,
V. D.
Wheeler
,
M. W.
Knight
,
G. T.
Papadakis
,
L. A.
Sweatlock
,
P. W. C.
Hon
, and
M. L.
Povinelli
,
Sci. Rep.
10
,
13964
(
2020
).
7.
D. Y.
Xu
,
J. M.
Zhao
, and
L. H.
Liu
,
Int. J. Therm. Sci.
165
,
106934
(
2021
).
8.
B.
Li
,
L.
Wang
, and
G.
Casati
,
Appl. Phys. Lett.
88
(
14
),
143501
(
2006
).
9.
C. R.
Otey
,
W. T.
Lau
, and
S.
Fan
,
Phys. Rev. Lett.
104
(
15
),
154301
(
2010
).
10.
P.
Ben-Abdallah
and
S.-A.
Biehs
,
Phys. Rev. Lett.
112
(
4
),
044301
(
2014
).
11.
V.
Kubytskyi
,
S. A.
Biehs
, and
P.
Ben-Abdallah
,
Phys. Rev. Lett.
113
(
7
),
074301
(
2014
).
12.
P.
Ben-Abdallah
and
S.-A.
Biehs
,
Phys. Rev. B
94
(
24
),
241401(R)
(
2016
).
13.
J.
Ordonez-Miranda
,
Y.
Ezzahri
,
J. A.
Tiburcio-Moreno
,
K.
Joulain
, and
J.
Drevillon
,
Phys. Rev. Lett.
123
(
2
),
025901
(
2019
).
14.
K.
Joulain
,
J.-P.
Mulet
,
F.
Marquier
,
R.
Carminati
, and
J.-J.
Greffet
,
Surf. Sci. Rep.
57
(
3–4
),
59
(
2005
).
15.
L.
Hu
,
A.
Narayanaswamy
,
X.
Chen
, and
G.
Chen
,
Appl. Phys. Lett.
92
(
13
),
133106
(
2008
).
16.
S.
Shen
,
A.
Narayanaswamy
, and
G.
Chen
,
Nano Lett.
9
(
8
),
2909
(
2009
).
17.
S.
Basu
,
Z. M.
Zhang
, and
C. J.
Fu
,
Int. J. Energy Res.
33
(
13
),
1203
(
2009
).
18.
Y.
Yang
,
S.
Basu
, and
L.
Wang
,
J. Quant. Spectrosc. Radiat. Transfer
158
,
69
(
2015
).
19.
P. J.
van Zwol
,
L.
Ranno
, and
J.
Chevrier
,
Phys. Rev. Lett.
108
(
23
),
234301
(
2012
).
20.
P. J.
van Zwol
,
K.
Joulain
,
P.
Ben Abdallah
,
J. J.
Greffet
, and
J.
Chevrier
,
Phys. Rev. B
83
(
20
),
201404(R)
(
2011
).
21.
K.
Ito
,
K.
Nishikawa
,
A.
Miura
,
H.
Toshiyoshi
, and
H.
Iizuka
,
Nano Lett.
17
(
7
),
4347
(
2017
).
22.
Y.
Chen
,
Z.
Zheng
, and
Y.
Xuan
,
J. Quant. Spectrosc. Radiat. Transfer
218
,
171
(
2018
).
23.
Y.
Huang
,
S. V.
Boriskina
, and
G.
Chen
,
Appl. Phys. Lett.
105
(
24
),
244102
(
2014
).
24.
E.
Moncada-Villa
,
V.
Fernández-Hurtado
,
F. J.
García-Vidal
,
A.
García-Martín
, and
J. C.
Cuevas
,
Phys. Rev. B
92
(
12
),
125418
(
2015
).
25.
L.
Ge
,
K.
Gong
,
Y.
Cang
,
Y.
Luo
,
X.
Shi
, and
Y.
Wu
,
Phys. Rev. B
100
(
3
),
035414
(
2019
).
26.
H.
Wu
,
Y.
Huang
,
L.
Cui
, and
K.
Zhu
,
Phys. Rev. Appl.
11
(
5
),
054020
(
2019
).
27.
G.
Xu
,
J.
Sun
,
H.
Mao
, and
T.
Pan
,
J. Quant. Spectrosc. Radiat. Transfer
232
,
20
(
2019
).
28.
E.
Moncada-Villa
and
J. C.
Cuevas
,
Phys. Rev. B
101
(
8
),
085411
(
2020
).
29.
J.
Song
,
Q.
Cheng
,
L.
Lu
,
B.
Li
,
K.
Zhou
,
B.
Zhang
,
Z.
Luo
, and
X.
Zhou
,
Phys. Rev. Appl.
13
(
2
),
024054
(
2020
).
30.
E.
Moncada-Villa
and
J. C.
Cuevas
,
Phys. Rev. B
103
(
7
),
075432
(
2021
).
31.
J.
Peng
,
G.
Tang
,
L.
Wang
,
R.
Macêdo
,
H.
Chen
, and
J.
Ren
,
ACS Photonics
8
(
8
),
2183
(
2021
).
32.
J.
Kou
and
A. J.
Minnich
,
Opt. Express
26
(
18
),
A729
(
2018
).
33.
Y.
Yang
and
L.
Wang
,
J. Quant. Spectrosc. Radiat. Transfer
197
,
68
(
2017
).
34.
O.
Ilic
,
N. H.
Thomas
,
T.
Christensen
,
M. C.
Sherrott
,
M.
Soljacic
,
A. J.
Minnich
,
O. D.
Miller
, and
H. A.
Atwater
,
ACS Nano
12
(
3
),
2474
(
2018
).
35.
A. I.
Volokitin
,
Phys. Rev. B
103
(
4
),
L041403
(
2021
).
36.
O.
Ilic
,
M.
Jablan
,
J. D.
Joannopoulos
,
I.
Celanovic
,
H.
Buljan
, and
M.
Soljačić
,
Phys. Rev. B
85
(
15
),
155422
(
2012
).
37.
G. T.
Papadakis
,
B.
Zhao
,
S.
Buddhiraju
, and
S.
Fan
,
ACS Photonics
6
(
3
),
709
(
2019
).
38.
N. H.
Thomas
,
M. C.
Sherrott
,
J.
Broulliet
,
H. A.
Atwater
, and
A. J.
Minnich
,
Nano Lett.
19
(
6
),
3898
(
2019
).
39.
M.
Francoeur
,
M.
Pinar Mengüç
, and
R.
Vaillon
,
J. Phys. D: Appl. Phys.
43
(
7
),
075501
(
2010
).
40.
E. D.
Palik
,
Handbook of Optical Constants of Solids
(
Academic Press
,
San Diego
,
1985
).
41.
E. H.
Nicollian
and
J. R.
Brews
,
MOS (Metal Oxide Semiconductor) Physics and Technology
(
Wiley
,
New York
,
1982
).
42.
P. A.
Markowich
,
The Stationary Semiconductor Device Equations
(
Springer
,
Vienna
,
1986
).
43.
S. M.
Sze
,
Physics of Semiconductor Devices
(
Wiley
,
Hoboken
,
2007
).
44.
S.
Basu
,
B. J.
Lee
, and
Z. M.
Zhang
,
J. Heat Transfer
132
,
023301
(
2010
).
45.
C. J.
Fu
and
Z. M.
Zhang
,
Int. J. Heat Mass Transfer
49
(
9–10
),
1703
(
2006
).
46.
S. A.
Maier
,
Plasmonics: Fundamentals and Applications
(
Springer
,
New York
,
2007
).
47.
A. V.
Krasavin
and
A. V.
Zayats
,
Phys. Rev. Lett.
109
(
5
),
053901
(
2012
).
48.
S.
Basu
,
B. J.
Lee
, and
Z. M.
Zhang
,
J. Heat Transfer
132
(
2
),
023302
(
2010
).
49.
D. Y.
Xu
,
A.
Bilal
,
J. M.
Zhao
,
L. H.
Liu
, and
Z. M.
Zhang
,
Int. J. Heat Mass Transfer
142
,
118432
(
2019
).
50.
D. Y.
Xu
,
J. M.
Zhao
, and
L. H.
Liu
,
Appl. Phys. Lett.
119
(
14
),
141106
(
2021
).
51.
J.-P.
Mulet
,
K.
Joulain
,
R.
Carminati
, and
J.-J.
Greffet
,
Microscale Thermophys. Eng.
6
(
3
),
209
(
2002
).
52.
Z. M.
Zhang
,
Nano/Microscale Heat Transfer
, 2nd ed. (
Springer Nature Switzerland AG
,
Switzerland
,
2020
).
53.
M.
Francoeur
,
M.
Pinar Mengüç
, and
R.
Vaillon
,
J. Quant. Spectrosc. Radiat. Transfer
110
(
18
),
2002
(
2009
).

Supplementary Material

You do not currently have access to this content.