This study proposes a bluff body non-rotational galloping-based piezoelectric wind energy harvester (BNRGH) for overall output performance enhancement. The bluff body used in this structure is designed to be available to rotate with respect to the free end of two cantilever beams by the connection of rotatable hinges. A series of performance comparisons are conducted experimentally in a wind tunnel between the proposed structure and the conventional galloping-based piezoelectric energy harvester, which commonly configured with a single beam. The results show that the proposed structure is capable of preventing the variation of the attack angle due to the self-rotation of the bluff body caused by the deflection of a common single beam, thus avoiding the amplitude saturation of the bluff body at a higher wind velocity range. It shows that the output voltage remains a continuous linear increase within elastic deformation range of the cantilever beam even in higher wind velocity range, which is helpful in accomplishing a broad wind range for a significant improvement of the overall performance. Overall, the proposed BNRGH provides a design guidance for a small size galloping-based energy harvester to achieve an excellent output performance, which holds great potential to promote its application in wireless node networks for self-power supply.

1.
X.
Fu
,
T.
Bu
,
C.
Li
,
G.
Liu
, and
C.
Zhang
,
Nanoscale
12
(
47
),
23929
23944
(
2020
).
3.
J.
Wang
,
W.
Ding
,
L.
Pan
,
C.
Wu
,
H.
Yu
,
L.
Yang
,
R.
Liao
, and
Z. L.
Wang
,
ACS Nano
12
(
4
),
3954
3963
(
2018
).
4.
W.
Sun
and
J.
Seok
,
Energy Convers. Manage.
205
,
112472
(
2020
).
5.
J.
Wang
,
G.
Hu
,
Z.
Su
,
G.
Li
,
W.
Zhao
,
L.
Tang
, and
L.
Zhao
,
Smart Mater. Struct.
28
(
12
),
12lt02
(
2019
).
6.
M.
Zheng
,
D.
Han
,
S.
Gao
, and
J.
Wang
,
Ocean Eng.
213
,
107624
(
2020
).
7.
W.
Sun
and
J.
Seok
,
Mech. Syst. Signal Proc.
152
,
107477
(
2021
).
8.
D.
Zhao
,
X.
Hu
,
T.
Tan
,
Z.
Yan
, and
W.
Zhang
,
Energy Convers. Manage.
222
,
113260
(
2020
).
9.
Z.
Zhou
,
W.
Qin
,
P.
Zhu
,
W.
Du
,
W.
Deng
, and
J.
Pan
,
Appl. Phys. Lett.
114
(
24
),
243902
(
2019
).
10.
X.
Li
,
Z.
Li
,
C.
Bi
,
B.
Liu
, and
Y.
Su
,
IEEE Access
8
,
167631
167646
(
2020
).
11.
X.
He
,
X.
Yang
, and
S.
Jiang
,
Appl. Phys. Lett.
112
(
3
),
033901
(
2018
).
12.
W.
Sun
,
S.
Jo
, and
J.
Seok
,
Int. J. Mech. Sci.
156
,
435
445
(
2019
).
13.
T.
Tan
,
X.
Hu
,
Z.
Yan
,
Y.
Zou
, and
W.
Zhang
,
Sens. Actuators, A
302
,
111813
(
2020
).
14.
C.
Zhou
,
H.-X.
Zou
,
K.-X.
Wei
, and
J.
Liu
,
Smart Mater. Struct.
28
(
12
),
125022
(
2019
).
15.
K.
Yang
,
T.
Qiu
,
J.
Wang
, and
L.
Tang
,
Smart Mater. Struct.
29
(
7
),
07LT01
(
2020
).
16.
J.
Wang
,
S.
Gu
,
C.
Zhang
,
G.
Hu
,
G.
Chen
,
K.
Yang
,
H.
Li
,
Y.
Lai
,
G.
Litak
, and
D.
Yurchenko
,
Energy Convers. Manage.
213
,
112835
(
2020
).
17.
H.-X.
Zou
,
M.
Li
,
L.-C.
Zhao
,
Q.-H.
Gao
,
K.-X.
Wei
,
L.
Zuo
,
F.
Qian
, and
W.-M.
Zhang
,
Energy
217
,
119429
(
2021
).
18.
F.
Clementi
,
S.
Lenci
, and
G.
Rega
,
Meccanica
55
(
6
),
1309
1332
(
2020
).
19.
W.
Sun
,
C.
Guo
,
G.
Cheng
,
S.
He
,
Z.
Yang
, and
J.
Ding
,
Nonlinear Dyn.
108
,
3347
3366
(
2022
).
20.
B.
Seyed-Aghazadeh
,
H.
Samandari
, and
S.
Dulac
,
Phys. Fluids
32
(
7
),
071701
(
2020
).
21.
J.
Zhang
,
D.
Qu
,
Z.
Fang
, and
C.
Shu
,
J. Mech. Sci. Technol.
34
(
11
),
4357
4366
(
2020
).
22.
G.
Hu
,
J.
Wang
, and
L.
Tang
,
Mech. Syst. Signal Proc.
150
,
107301
(
2021
).
23.
W.
Sun
,
F.
Guo
, and
J.
Seok
,
Energy Convers. Manage.
197
,
111880
(
2019
).
24.
G.
Chen
,
Z.
Zhang
,
L.
Kong
, and
H.
Wang
,
J. Mech. Rob.
12
(
1
),
011011
(
2020
).
25.
K.
Kong
,
G.
Chen
, and
G.
Hao
,
J. Mech. Rob.
11
(
6
),
064502
(
2019
).
26.
Y.
Yang
,
L.
Zhao
, and
L.
Tang
,
Appl. Phys. Lett.
102
(
6
),
064105
(
2013
).
27.
G. A.
Vio
,
G.
Dimitriadis
, and
J. E.
Cooper
,
J. Fluids Struct.
23
(
7
),
983
1011
(
2007
).
28.
S. C.
Luo
,
Y. T.
Chew
, and
Y. T.
Ng
,
J. Fluids Struct.
18
(
1
),
103
118
(
2003
).
29.
H.
Alhussein
and
M. F.
Daqaq
,
Nonlinear Dyn.
99
(
1
),
57
72
(
2020
).
You do not currently have access to this content.