Designing inorganic solid electrolytes (ISEs) with both excellent electrochemical stability and high ionic conductivity is an important research direction for all-solid-state batteries. However, due to the electronic conduction of hierarchical decomposition products, there is an imbalance between the ionic transport and electrochemical stability window of the ISEs. Here, we propose a computational approach that incorporates bond valence-Ewald energy analysis and dynamically determined decomposition pathway to portray the competing relationship between ionic transport and stable electrochemical window in solid electrolytes. Following this, we explain the high ionic conductivity and wide electrochemical stability window of Li–Si–B–S solid electrolytes, which features shared corner and edge from tetrahedral SiS4/BS4. Our approach is not only applicable to efficiently characterize the previously reported inorganic solid electrolytes but also expected to accelerate the discovery of more systems.

1.
A.
Manthiram
,
X.
Yu
, and
S. F.
Wang
, “
Lithium battery chemistries enabled by solid-state electrolytes
,”
Nat. Rev. Mater.
2
,
16103
(
2017
).
2.
N.
Kamaya
,
K.
Homma
,
Y.
Yamakawa
,
M.
Hirayama
,
R.
Kanno
,
M.
Yonemura
,
T.
Kamiyama
,
Y.
Kato
,
S.
Hama
,
K.
Kawamoto
, and
A.
Mitsui
, “
A lithium superionic conductor
,”
Nat. Mater.
10
,
682
–686 (
2011
).
3.
V. A.
Weiss
and
G.
Rocktaschel
, “
Zur Kenntnis von Thiosilicaten
,”
Z. Anorg. Allg. Chem.
307
,
1
6
(
1960
).
4.
B. T.
Ahn
and
R. A.
Huggins
, “
Synthesis and lithium conductivities of Li2SiS3 and Li4SiS4
,”
Mater. Res. Bull.
24
,
889
897
(
1989
).
5.
B. T.
Ahn
and
R. A.
Huggins
, “
Preparation, structures and conductivities of Li2SiS3 phases
,”
Mater. Res. Bull.
25
,
381
389
(
1990
).
6.
J. H.
Kennedy
,
Z. M.
Zhang
, and
H.
Eckert
, “
Ionically conductive sulfide-based lithium glasses
,”
J. Non-Cryst. Solids
123
,
328
338
(
1990
).
7.
B. T.
Ahn
and
R. A.
Huggins
, “
Phase behavior and conductivity of Li2SiS3 composition
,”
Solid State Ion.
46
,
237
242
(
1991
).
8.
D. L.
Price
and
A. J. G.
Ellison
, “
Atomic structure and dynamics of fast-ion conducting glasses
,”
J. Non-Cryst. Solids
177
,
293
298
(
1994
).
9.
K.
Muruganandam
and
M.
Seshasayee
, “
Structural investigation of Li2SiS3 glass using x-ray RDF
,”
Solid State Commun
95
,
499
502
(
1995
).
10.
A.
Pradel
,
G.
Taillades
,
M.
Ribes
, and
H.
Eckert
, “
29Si NMR structural studies of ionically conductive silicon chalcogenide glasses and model compounds
,”
J. Non-Cryst. Solids
188
,
75
86
(
1995
).
11.
D. I.
Bletskan
,
V. V.
Vakulchak
,
K. E.
Glukhov
, and
O. A.
Mykaylo
, “
Electron structure of the equilibrium and metastable phases in superionic Li2SiS3
,”
Semicond. Phys., Quantum Electron. Optoelectron.
16
,
48
54
(
2013
).
12.
Y. L.
Sun
,
K.
Suzuki
,
S.
Hori
,
M.
Hirayama
, and
R.
Kanno
, “
Superionic conductors: Li10+δ [SnySi1–y]1+δP2−δS12 with a Li10GeP2S12-type structure in the Li3PS4–Li4SnS4–Li4SiS4 quasi-ternary system
,”
Chem. Mater.
29
,
5858
5864
(
2017
).
13.
W. Z.
Huang
,
K.
Yoshino
,
S.
Hori
,
K.
Suzuki
,
M.
Yonemura
,
M.
Hirayama
, and
R.
Kanno
, “
Superionic lithium conductor with a cubic argyrodite-type structure in the Li–Al–Si–S system
,”
J. Solid State Chem.
270
,
487
492
(
2019
).
14.
W. Z.
Huang
,
L. D.
Cheng
,
S.
Hori
,
K.
Suzuki
,
M.
Yonemura
,
M.
Hirayama
, and
R.
Kanno
, “
Ionic conduction mechanism of a lithium superionic argyrodite in the Li-Al-Si-S-O system
,”
Mater. Adv.
1
,
334
340
(
2020
).
15.
W. Z.
Huang
,
N.
Matsui
,
S.
Hori
,
K.
Suzuki
,
M.
Hirayama
,
M.
Yonemura
,
T.
Saito
,
T.
Kamiyama
,
Y.
Sasaki
,
Y.
Yoon
,
S.
Kim
, and
R.
Kanno
, “
Anomalously high ionic conductivity of Li2SiS3‐type conductors
,”
J. Am. Chem. Soc.
144
,
4989
4994
(
2022
).
16.
A. D.
Sendek
,
Q.
Yang
,
E. D.
Cubuk
,
K.-A. N.
Duerloo
,
Y.
Cui
, and
E. J.
Reed
, “
Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials
,”
Energy Environ. Sci.
10
,
306
320
(
2017
).
17.
A. D.
Sendek
,
E. D.
Cubuk
,
E. R.
Antoniuk
,
G.
Cheon
,
Y.
Cui
, and
E. J.
Reed
, “
Machine learning-assisted discovery of solid Li-ion conducting materials
,”
Chem. Mater.
31
,
342
352
(
2019
).
18.
A. D.
Sendek
,
E. R.
Antoniuk
,
E. D.
Cubuk
,
B.
Ransom
,
B. E.
Francisco
,
J. B.
Garrett
,
Y.
Cui
, and
E. J.
Reed
, “
Combining superionic conduction and favorable decomposition products in the crystalline lithium−boron−sulfur system: A new mechanism for stabilizing solid Li-ion electrolytes
,”
ACS Appl. Mater. Interfaces
12
,
37957
37966
(
2020
).
19.
K.
Kaup
,
K.
Bishop
,
A.
Assoud
,
J.
Liu
, and
L. F.
Nazar
, “
Fast ion-conducting thioboracite with a perovskite topology and argyrodite-like lithium substructure
,”
J. Am. Chem. Soc.
143
,
6952
6961
(
2021
).
20.
K.
Kaup
,
A.
Assoud
,
J.
Liu
, and
L. F.
Nazar
, “
Fast Li-ion conductivity in superadamantanoid lithium thioborate halides
,”
Angew. Chem., Int. Ed.
60
,
6975
6980
(
2021
).
21.
B.
He
,
S. T.
Chi
,
A. J.
Ye
,
P. H.
Mi
,
L. W.
Zhang
,
B. W.
Pu
,
Z. Y.
Zou
,
Y. B.
Ran
,
Q.
Zhao
,
D.
Wang
,
W. Q.
Zhang
,
J. T.
Zhao
,
S.
Adams
,
M.
Avdeev
, and
S. Q.
Shi
, “
High-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms
,”
Sci. Data
7
,
151
(
2020
).
22.
Y. B.
Ran
,
Z. Y.
Zou
,
B.
Liu
,
D.
Wang
,
B. W.
Pu
,
P. H.
Mi
,
W.
Shi
,
Y. J.
Li
,
B.
He
,
Z. H.
Lu
,
X.
Lu
,
B. H.
Li
, and
S. Q.
Shi
, “
Towards prediction of ordered phases in rechargeable battery chemistry via group–subgroup transformation
,”
npj Comput. Mater.
7
,
184
(
2021
).
23.
B.
He
,
A. J.
Ye
,
S. T.
Chi
,
P. H.
Mi
,
Y. B.
Ran
,
L. W.
Zhang
,
X. X.
Zou
,
B. W.
Pu
,
Q.
Zhao
,
Z. Y.
Zou
,
D.
Wang
,
W. Q.
Zhang
,
J. T.
Zhao
,
M.
Avdeev
, and
S. Q.
Shi
, “
CAVD, towards better characterization of void space for ionic transport analysis
,”
Sci. Data
7
,
153
(
2020
).
24.
W.
Shi
,
B.
He
,
B. W.
Pu
,
Y.
Ren
,
M.
Avdeev
, and
S. Q.
Shi
, “
Software for evaluating long-range electrostatic interactions base on the Ewald summation and its application to electrochemical energy storage materials
,”
J. Phys. Chem. A
126
,
5222
5230
(
2022
).
25.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Comp. Mater. Sci.
6
,
15
50
(
1996
).
26.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
27.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
28.
L.
Pan
,
L. W.
Zhang
,
A. J.
Ye
,
S. T.
Chi
,
Z. Y.
Zou
,
B.
He
,
L. Q.
Chen
,
Q.
Zhao
,
D.
Wang
, and
S. Q.
Shi
, “
Revisiting the ionic diffusion mechanism in Li3PS4 via the joint usage of geometrical analysis and bond valence method
,”
J. Materiomics
5
,
688
695
(
2019
).
29.
J. P.
Liu
,
Z. H.
Lu
,
M. B.
Effat
, and
F.
Ciucci
, “
A theoretical study on the stability and ionic conductivity of the Na11M2PS12 (M=Sn, Ge) superionic conductors
,”
J. Power Sources
409
,
94
101
(
2019
).
30.
S.
Lin
,
Y. X.
Lin
,
B.
He
,
B. W.
Pu
,
Y.
Ren
,
G. X.
Wang
,
Y. Q.
Luo
, and
S. Q.
Shi
, “
Reclaiming neglected compounds as promising solid state electrolytes by predicting electrochemical stability window with dynamically determined decomposition pathway
,”
Adv. Energy Mater.
12
,
2201808
(
2022
).
31.
J. E.
Saal
,
S.
Kirklin
,
M.
Aykol
,
B.
Meredig
, and
C.
Wolverton
, “
Materials design and discovery with high-throughput density functional theory: The Open Quantum Materials Database (OQMD)
,”
J. Mater.
65
,
1501
1509
(
2013
).
32.
L. W.
Zhang
,
B.
He
,
Q.
Zhao
,
Z. Y.
Zou
,
S. T.
Chi
,
P. H.
Mi
,
A. J.
Ye
,
Y. J.
Li
,
D.
Wang
,
M.
Avdeev
,
S.
Adams
, and
S. Q.
Shi
, “
A database of ionic transport characteristics for over 29 000 inorganic compounds
,”
Adv. Funct. Mater.
30
,
2003087
(
2020
).
33.
B.
He
,
P. H.
Mi
,
A. J.
Ye
,
S. T.
Chi
,
Y.
Jiao
,
L. W.
Zhang
,
B. W.
Pu
,
Z. Y.
Zou
,
W. Q.
Zhang
,
M.
Avdeev
,
S.
Adams
,
J. T.
Zhao
, and
S. Q.
Shi
, “
A highly efficient and informative method to identify ion transport networks in fast ion conductors
,”
Acta Mater.
203
,
116490
(
2021
).
34.
Y.
Kato
,
S.
Hori
,
T.
Saito
,
K.
Suzuki
,
M.
Hirayama
,
A.
Mitsui
,
M.
Yonemura
,
H.
Iba
, and
R.
Kanno
, “
High-power all-solid-state batteries using sulfide superionic conductors
,”
Nat. Energy
1
,
16030
(
2016
).
35.
X. F.
He
,
Y. Z.
Zhu
,
A.
Epstein
, and
Y. F.
Mo
, “
Statistical variances of diffusional properties from ab initio molecular dynamics simulations
,”
npj Comput. Mater.
4
,
18
(
2018
).
36.
Y. F.
Mo
,
S. P.
Ong
, and
G.
Ceder
, “
First principles study of the Li10GeP2S12 lithium super ionic conductor material
,”
Chem. Mater.
24
,
15
17
(
2012
).
37.
S. P.
Ong
,
W. D.
Richards
,
A.
Jain
,
G.
Hautier
,
M.
Kocher
,
S.
Cholia
,
D.
Gunter
,
V. L.
Chevrier
,
K. A.
Persson
, and
G.
Ceder
, “
Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
,”
Chem. Mater.
68
,
314
319
(
2013
).
38.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
, and
K. A.
Persson
, “
Commentary: The materials project: A materials genome approach to accelerating materials innovation
,”
APL Mater.
1
,
011002
(
2013
).
39.
B.
Liu
,
Q. L.
Hu
,
T. Y.
Gao
,
P. G.
Liao
,
Y. F.
Wen
,
Z. H.
Lu
,
J.
Yang
,
S. Q.
Shi
, and
W. Q.
Zhang
, “
Computational insights into the ionic transport mechanism and interfacial stability of the Li2OHCl solid-state electrolyte
,”
J. Materiomics
8
,
59
67
(
2022
).
40.
K.
Persson
,
Materials Data on LiB (SG:194) by Materials Project; LBNL Materials Project
[
Lawrence Berkeley National Laboratory (LBNL)
,
Berkeley, CA
,
2016
].
41.
S.
Wenzel
,
S.
Randau
,
T.
Leichtweiß
,
D. A.
Weber
,
J.
Sann
,
W. G.
Zeier
, and
J.
Janek
, “
Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode
,”
Chem. Mater.
28
,
2400
2407
(
2016
).

Supplementary Material

You do not currently have access to this content.