All-solid-state lithium-metal batteries have been regarded as the next-generation energy storage due to the potential high safety and high energy density. However, for oxide solid electrolytes (SEs), the relatively low ionic conductivities and the growth of lithium dendrite leading to safety issues limit their commercialization. Here, we systematically investigate the influences of external magnetic field on electrochemical performances of oxide SEs. It reveals that the magnetic field can improve ionic conductivity of SEs and the cycle performance in Li symmetric cells. The enhanced performance is because the magnetohydrodynamics effect can promote diffusion in SEs and homogenize distribution of lithium deposition to avoid the propagation of lithium dendrite. This strategy can be extent to other types of SEs or various energy applications.

1.
Z. P.
Cano
,
D.
Banham
,
S.
Ye
,
A.
Hintennach
,
J.
Lu
,
M.
Fowler
, and
Z.
Chen
,
Nat. Energy
3
,
279
(
2018
).
2.
K.
Liu
,
Y.
Liu
,
D.
Lin
,
A.
Pei
, and
Y.
Cui
,
Sci. Adv.
4
,
eaas9820
(
2018
).
3.
X.
Ji
,
Y.
Zhang
,
M.
Cao
,
Q.
Gu
,
H.
Wang
,
J.
Yu
,
Z.-H.
Guo
, and
X.
Zhou
,
J. Adv. Ceram.
11
,
835
(
2022
).
4.
C.
Zhang
,
C.
Wu
,
Z.
Zhang
,
Y.
Shen
, and
W.
Liu
,
Trans. Tianjin Univ.
26
,
142
(
2020
).
5.
C.
Liu
,
Y.
Qiu
,
Y.
Liu
,
K.
Xu
,
N.
Zhao
,
C.
Lao
,
J.
Shen
, and
Z.
Chen
,
J. Adv. Ceram.
11
,
295
(
2022
).
6.
D.
Lin
,
Y.
Liu
, and
Y.
Cui
,
Nat. Nanotechnol.
12
,
194
(
2017
).
7.
S.
Xia
,
X.
Wu
,
Z.
Zhang
,
Y.
Cui
, and
W.
Liu
,
Chem
5
,
753
(
2019
).
8.
C.
Zhao
,
P.
Chen
,
R.
Zhang
,
X.
Chen
,
B.
Li
,
X.
Zhang
,
X.
Cheng
, and
Q.
Zhang
,
Sci. Adv.
4
,
eaat3446
(
2018
).
9.
Q.
Hu
,
Z.
Sun
,
L.
Nie
,
S.
Chen
,
J.
Yu
, and
W.
Liu
,
Mater. Today Energy
27
,
101052
(
2022
).
10.
H. M.
Xiang
,
Y.
Xing
,
F. Z.
Dai
,
H. J.
Wang
,
L.
Su
,
L.
Miao
,
G. J.
Zhang
,
Y. G.
Wang
,
X. W.
Qi
,
L.
Yao
,
H. L.
Wang
,
B.
Zhao
,
J. Q.
Li
, and
Y. C.
Zhou
,
J. Adv. Ceram.
10
,
385
(
2021
).
11.
R.
Wei
,
S.
Chen
,
T.
Gao
, and
W.
Liu
,
Nano Sel.
2
,
2256
(
2021
).
12.
Y.
Li
,
Y.
Sun
,
A.
Pei
,
K.
Chen
,
A.
Vailionis
,
Y.
Li
,
G.
Zheng
,
J.
Sun
, and
Y.
Cui
,
ACS Cent. Sci.
4
,
97
(
2018
).
13.
E.
Rangasamy
,
Z.
Liu
,
M.
Gobet
,
K.
Pilar
,
G.
Sahu
,
W.
Zhou
,
H.
Wu
,
S.
Greenbaum
, and
C.
Liang
,
J. Am. Chem. Soc.
137
,
1384
(
2015
).
14.
S.
Chen
,
J.
Zhang
,
L.
Nie
,
X.
Hu
,
Y.
Huang
,
Y.
Yu
, and
W.
Liu
,
Adv. Mater.
33
,
2002325
(
2021
).
15.
D. C.
Gunduz
,
R.
Schierholz
,
S.
Yu
,
H.
Tempel
,
H.
Kungl
, and
R.-A.
Eichel
,
J. Adv. Ceram.
9
,
149
(
2020
).
16.
W. J.
Kwon
,
H.
Kim
,
K.-N.
Jung
,
W.
Cho
,
S. H.
Kim
,
J.-W.
Lee
, and
M.-S.
Park
,
J. Mater. Chem. A
5
,
6257
(
2017
).
17.
J.-F.
Wu
and
X.
Guo
,
Phys. Chem. Chem. Phys.
19
,
5880
(
2017
).
18.
S.
Chen
,
L.
Nie
,
X.
Hu
,
Y.
Zhang
,
Y.
Zhang
,
Y.
Yu
, and
W.
Liu
,
Adv. Mater.
34
,
2200430
(
2022
).
19.
T.
Krauskopf
,
R.
Dippel
,
H.
Hartmann
,
K.
Peppler
,
B.
Mogwitz
,
F. H.
Richter
,
W. G.
Zeier
, and
J.
Janek
,
Joule
3
,
2030
(
2019
).
20.
S.
Chen
,
Z.
Nie
,
F.
Tian
,
L.
Nie
,
R.
Wei
,
J.
Yu
,
T.
Gao
,
Z.
Sun
,
N.
Yang
, and
W.
Liu
,
Adv. Funct. Mater.
32
,
2113318
(
2022
).
21.
P. M.
Gonzalez Puente
,
S.
Song
,
S.
Cao
,
L. Z.
Rannalter
,
Z.
Pan
,
X.
Xiang
,
Q.
Shen
, and
F.
Chen
,
J. Adv. Ceram.
10
,
933
(
2021
).
22.
Y.
Zhang
,
W.
Zhai
,
X.
Hu
,
Y.
Jiang
,
S.
Chen
,
Y.
Zhang
,
W.
Liu
, and
Y.
Yu
,
Nano Res.
(
2022
).
23.
Y.
Ren
,
Y.
Shen
,
Y.
Lin
, and
C.-W.
Nan
,
Electrochem. Commun.
57
,
27
(
2015
).
24.
S.
Yu
and
D. J.
Siegel
,
ACS Appl. Mater. Interfaces
10
,
38151
(
2018
).
25.
S.
Chen
,
X.
Hu
,
W.
Bao
,
Z.
Wang
,
Q.
Yang
,
L.
Nie
,
X.
Zhang
,
J.
Zhang
,
Y.
Jiang
,
Y.
Han
,
C.
Wan
,
J.
Xie
,
Y.
Yu
, and
W.
Liu
,
Cell Rep. Phys. Sci.
2
,
100569
(
2021
).
26.
C.
Zheng
,
J.
Su
,
Z.
Song
,
T.
Xiu
,
J.
Jin
,
M. E.
Badding
, and
Z.
Wen
,
Mater. Today Energy
27
,
101034
(
2022
).
27.
L.
Pan
,
H.
He
, and
H.
He
,
Mater. Today Energy
26
,
101015
(
2022
).
28.
B.
Wu
,
S.
Wang
,
J.
Lochala
,
D.
Desrochers
,
B.
Liu
,
W.
Zhang
,
J.
Yang
, and
J.
Xiao
,
Energy Environ. Sci.
11
,
1803
(
2018
).
29.
K.
Shen
,
X.
Xu
, and
Y.
Tang
,
Nano Energy
92
,
106703
(
2022
).
30.
W.
Li
,
Z.
Liang
,
Z.
Lu
,
X.
Tao
,
K.
Liu
,
H.
Yao
, and
Y.
Cui
,
Nano Lett.
15
,
7394
(
2015
).
31.
J.
Billaud
,
F.
Bouville
,
T.
Magrini
,
C.
Villevieille
, and
A. R.
Studart
,
Nat. Energy
1
,
16097
(
2016
).
32.
J. S.
Sander
,
R. M.
Erb
,
L.
Li
,
A.
Gurijala
, and
Y. M.
Chiang
,
Nat. Energy
1
,
16099
(
2016
).
33.
Y.
Huang
,
X.
Wu
,
L.
Nie
,
S.
Chen
,
Z.
Sun
,
Y.
He
, and
W.
Liu
,
Solid State Ionics
345
,
115171
(
2020
).
34.
K.
Shen
,
Z.
Wang
,
X.
Bi
,
Y.
Ying
,
D.
Zhang
,
C.
Jin
,
G.
Hou
,
H.
Cao
,
L.
Wu
,
G.
Zheng
,
Y.
Tang
,
X.
Tao
, and
J.
Lu
,
Adv. Energy Mater.
9
,
1900260
(
2019
).
35.
A.
Wang
,
Q.
Deng
,
L.
Deng
,
X.
Guan
, and
J.
Luo
,
Adv. Funct. Mater.
29
,
1902630
(
2019
).
36.
J.
Awaka
,
A.
Takashima
,
K.
Kataoka
,
N.
Kijima
,
Y.
Idemoto
, and
J.
Akimoto
,
Chem. Lett.
40
,
60
(
2011
).
37.
J.
Han
,
J.
Zhu
,
Y.
Li
,
X.
Yu
,
S.
Wang
,
G.
Wu
,
H.
Xie
,
S. C.
Vogel
,
F.
Izumi
,
K.
Momma
,
Y.
Kawamura
,
Y.
Huang
,
J. B.
Goodenough
, and
Y.
Zhao
,
Chem. Commun.
48
,
9840
(
2012
).
38.
H.-M.
Cheng
,
F.-M.
Wang
, and
J. P.
Chu
,
Electrochem. Commun.
76
,
63
(
2017
).
39.
A.
Bund
,
S.
Koehler
,
H. H.
Kuehnlein
, and
W.
Plieth
,
Electrochim. Acta
49
,
147
(
2003
).
40.
G.
Ruan
,
J.
Hua
,
X.
Hu
, and
C.
Yu
,
Energy Rep.
8
,
1294
(
2022
).
41.
M.
Miura
,
Y.
Oshikiri
,
A.
Sugiyama
,
R.
Morimoto
,
I.
Mogi
,
M.
Miura
,
S.
Takagi
,
Y.
Yamauchi
, and
R.
Aogaki
,
Sci. Rep.
7
,
45511
(
2017
).
42.
L.
Yu
,
J.
Wang
, and
Z. J.
Xu
,
Small Struct.
2
,
2000043
(
2021
).

Supplementary Material

You do not currently have access to this content.