Resonant modal interaction is a nonlinear dynamic phenomenon observed in structures excited at large vibration amplitudes. In the present work, we report the experimental evidence of a 1:1 internal resonance in a symmetric resonant micromirror. The experiments are complemented with a reduced model obtained from the 3D finite element discretization of the device by parametrizing the system motion along a low dimensional invariant set of the phase space. The presence of coupling monomials in the governing equations makes the resulting dynamics non-linearizable. Both model and experimental data show the existence of a complex pattern of multiple stable solutions for a given value of the excitation frequency.

1.
B.
Vigna
,
P.
Ferrari
,
F.
Francesco Villa
,
E.
Lasalandra
, and
S.
Zerbini
,
Silicon Sensors and Actuators: The Feynman Roadmap
(
Springer
,
2022
).
2.
C.
Touzé
and
M.
Amabili
, “
Nonlinear normal modes for damped geometrically nonlinear systems: Application to reduced-order modelling of harmonically forced structures
,”
J. Sound Vib.
298
,
958
981
(
2006
).
3.
O.
Thomas
,
C.
Touzé
, and
A.
Chaigne
, “
Non-linear vibrations of free-edge thin spherical shells: Modal interaction rules and 1:1:2 internal resonance
,”
Int. J. Solids Struct.
42
,
3339
3373
(
2005
).
4.
G.
Gobat
,
L.
Guillot
,
A.
Frangi
,
B.
Cochelin
, and
C.
Touzé
, “
Backbone curves, Neimark-sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: Application to 1:2 internal resonance and frequency combs in MEMS
,”
Meccanica
56
,
1937
1969
(
2021
).
5.
A.
Givois
,
C.
Giraud-Audine
,
J.-F.
Deü
, and
O.
Thomas
, “
Experimental analysis of nonlinear resonances in piezoelectric plates with geometric nonlinearities
,”
Nonlinear Dyn.
102
,
1451
1462
(
2020
).
6.
D. A.
Czaplewski
,
S.
Strachan
,
O.
Shoshani
,
S. W.
Shaw
, and
D.
López
, “
Bifurcation diagram and dynamic response of a MEMS resonator with a 1:3 internal resonance
,”
Appl. Phys. Lett.
114
,
254104
(
2019
).
7.
G.
Gobat
,
V.
Zega
,
P.
Fedeli
,
L.
Guerinoni
,
C.
Touzé
, and
A.
Frangi
, “
Reduced order modelling and experimental validation of a MEMS gyroscope test-structure exhibiting 1: 2 internal resonance
,”
Sci. Rep.
11
,
16390
(
2021
).
8.
A.
Hajjaj
,
N.
Jaber
,
M.
Hafiz
,
S.
Ilyas
, and
M.
Younis
, “
Multiple internal resonances in MEMS arch resonators
,”
Phys. Lett. A
382
,
3393
3398
(
2018
).
9.
L.
Ruzziconi
,
N.
Jaber
,
L.
Kosuru
,
M. L.
Bellaredj
, and
M. I.
Younis
, “
Two-to-one internal resonance in the higher-order modes of a MEMS beam: Experimental investigation and theoretical analysis via local stability theory
,”
Int. J. Non-Linear Mech.
129
,
103664
(
2021
).
10.
F. K.
Alfosail
,
A. Z.
Hajjaj
, and
M. I.
Younis
, “
Theoretical and experimental investigation of two-to-one internal resonance in MEMS arch resonators
,”
J. Comput. Nonlinear Dyn.
14
,
011001
(
2019
).
11.
A.
Hajjaj
,
F.
Alfosail
,
N.
Jaber
,
S.
Ilyas
, and
M.
Younis
, “
Theoretical and experimental investigations of the crossover phenomenon in micromachined arch resonator: Part II—Simultaneous 1:1 and 2:1 internal resonances
,”
Nonlinear Dyn.
99
,
407
432
(
2020
).
12.
A.
Keşkekler
,
H.
Arjmandi-Tash
,
P. G.
Steeneken
, and
F.
Alijani
, “
Symmetry-breaking-induced frequency combs in graphene resonators
,”
Nano Lett.
22
,
6048
6054
(
2022
).
13.
S.
Lenci
,
F.
Clementi
,
L.
Kloda
,
J.
Warminski
, and
G.
Rega
, “
Longitudinal–transversal internal resonances in Timoshenko beams with an axial elastic boundary condition
,”
Nonlinear Dyn.
103
,
3489
3513
(
2021
).
14.
Z.
Shami
,
Y.
Shen
,
C.
Giraud-Audine
,
C.
Touzé
, and
O.
Thomas
, “
Nonlinear dynamics of coupled oscillators in 1:2 internal resonance: Effects of the non-resonant quadratic terms and recovery of the saturation effect
,”
Meccanica
(
2022
).
15.
G.
Kerschen
,
M.
Peeters
,
J.-C.
Golinval
, and
A. F.
Vakakis
, “
Nonlinear normal modes, part I: A useful framework for the structural dynamicist
,”
Mech. Syst. Signal Process.
23
,
170
194
(
2009
).
16.
M.
Peeters
,
R.
Viguié
,
G.
Sérandour
,
G.
Kerschen
, and
J.-C.
Golinval
, “
Nonlinear normal modes, part II: Toward a practical computation using numerical continuation techniques
,”
Mech. Syst. Signal Process.
23
,
195
216
(
2009
).
17.
L.
Renson
,
G.
Kerschen
, and
B.
Cochelin
, “
Numerical computation of nonlinear normal modes in mechanical engineering
,”
J. Sound Vib.
364
,
177
206
(
2016
).
18.
A.
Opreni
,
N.
Boni
,
R.
Carminati
, and
A.
Frangi
, “
Analysis of the nonlinear response of piezo-micromirrors with the harmonic balance method
,” in
Actuators
(
MDPI
,
2021
), Vol.
10
, p.
21
.
19.
A.
Quarteroni
,
A.
Manzoni
, and
F.
Negri
,
Reduced Basis Methods for Partial Differential Equations: An Introduction
(
Springer
,
2015
), Vol.
92
.
20.
S.
Pagani
,
A.
Manzoni
, and
A.
Quarteroni
, “
Numerical approximation of parametrized problems in cardiac electrophysiology by a local reduced basis method
,”
Comput. Methods Appl. Mech. Eng.
340
,
530
558
(
2018
).
21.
C.
Touzé
,
A.
Vizzaccaro
, and
O.
Thomas
, “
Model order reduction methods for geometrically nonlinear structures: A review of nonlinear techniques
,”
Nonlinear Dyn.
105
,
1141
1190
(
2021
).
22.
S.
Jain
,
P.
Tiso
,
J. B.
Rutzmoser
, and
D. J.
Rixen
, “
A quadratic manifold for model order reduction of nonlinear structural dynamics
,”
Comput. Struct.
188
,
80
94
(
2017
).
23.
A.
Vizzaccaro
,
A.
Opreni
,
L.
Salles
,
A.
Frangi
, and
C.
Touzé
, “
High order direct parametrisation of invariant manifolds for model order reduction of finite element structures: Application to large amplitude vibrations and uncovering of a folding point
,”
Nonlinear Dyn.
110
,
525
571
(
2022
).
24.
A.
Opreni
,
A.
Vizzaccaro
,
C.
Touzé
, and
A.
Frangi
, “
High order direct parametrisation of invariant manifolds for model order reduction of finite element structures: Application to generic forcing terms and parametrically excited systems
,”
ResearchSquare
(in press) (
2022
).
25.
A.
Givois
,
J.-J.
Tan
,
C.
Touzé
, and
O.
Thomas
, “
Backbone curves of coupled cubic oscillators in 1:1 internal resonance: Bifurcation scenario, measurements and parameter identification
,”
Meccanica
55
,
481
503
(
2020
).
26.
F.
Clementi
,
S.
Lenci
, and
G.
Rega
, “
1:1 internal resonance in a two d.o.f. complete system: A comprehensive analysis and its possible exploitation for design
,”
Meccanica
55
,
1309
1332
(
2020
).
27.
M. I.
Younis
,
MEMS Linear and Nonlinear Statics and Dynamics
(
Springer Science & Business Media
,
2011
), Vol.
20
.
28.
A. G.
Holzapfel
,
Nonlinear Solid Mechanics II
(
John Wiley & Sons, Inc
.,
2000
).
29.
A.
Devonshire
, “
Theory of ferroelectrics
,”
Adv. Phys.
3
,
85
130
(
1954
).
30.
A.
Frangi
,
A.
Opreni
,
N.
Boni
,
P.
Fedeli
,
R.
Carminati
,
M.
Merli
, and
G.
Mendicino
, “
Nonlinear response of PZT-actuated resonant micromirrors
,”
J. Microelectromech. Syst.
29
,
1421
1430
(
2020
).
31.
M. A.
Hopcroft
,
W. D.
Nix
, and
T. W.
Kenny
, “
What is the young's modulus of silicon?
,”
J. Microelectromech. Syst.
19
,
229
238
(
2010
).
32.
M. J.
Haun
,
E.
Furman
,
S.
Jang
,
H.
McKinstry
, and
L.
Cross
, “
Thermodynamic theory of PbTiO3
,”
J. Appl. Phys.
62
,
3331
3338
(
1987
).
33.
A.
Opreni
,
A.
Vizzaccaro
,
A.
Frangi
, and
C.
Touzé
, “
Model order reduction based on direct normal form: Application to large finite element MEMS structures featuring internal resonance
,”
Nonlinear Dyn.
105
,
1237
1272
(
2021
).
34.
M.
Cenedese
and
G.
Haller
, “
How do conservative backbone curves perturb into forced responses? A Melnikov function analysis
,”
Proc. R. Soc. A
476
,
20190494
(
2020
).
35.
A.
Haro
,
M.
Canadell
,
J.-L.
Figueras
,
A.
Luque
, and
J.-M.
Mondelo
,
The Parameterization Method for Invariant Manifolds
, Applied Mathematical Sciences Vol.
195
(
Springer
,
2016
).
36.
M.
Li
and
G.
Haller
, “
Nonlinear analysis of forced mechanical systems with internal resonance using spectral submanifolds, part II: Bifurcation and quasi-periodic response
,”
Nonlinear Dyn.
110
,
1045
1080
(
2022
).
37.
M.
Colin
,
O.
Thomas
,
S.
Grondel
, and
E.
Cattan
, “
Very large amplitude vibrations of flexible structures: Experimental identification and validation of a quadratic drag damping model
,”
J. Fluids Struct.
97
,
103056
(
2020
).
38.
A.
Dhooge
,
W.
Govaerts
, and
Y. A.
Kuznetsov
, “
Matcont: A Matlab package for numerical bifurcation analysis of odes
,”
ACM Trans. Math. Softw.
29
,
141
164
(
2003
).
39.
L.
Renson
,
A. D.
Shaw
,
D. A.
Barton
, and
S.
Neild
, “
Application of control-based continuation to a nonlinear structure with harmonically coupled modes
,”
Mech. Syst. Signal Process.
120
,
449
464
(
2019
).
40.
G.
Abeloos
,
M.
Volvert
, and
G.
Kerschen
, “
Experimental characterization of superharmonic resonances using phase-lock loop and control-based continuation
,” in
Nonlinear Structures & Systems
(
Springer
,
2023
), Vol.
1
, pp.
131
133
.
You do not currently have access to this content.