Resonant modal interaction is a nonlinear dynamic phenomenon observed in structures excited at large vibration amplitudes. In the present work, we report the experimental evidence of a 1:1 internal resonance in a symmetric resonant micromirror. The experiments are complemented with a reduced model obtained from the 3D finite element discretization of the device by parametrizing the system motion along a low dimensional invariant set of the phase space. The presence of coupling monomials in the governing equations makes the resulting dynamics non-linearizable. Both model and experimental data show the existence of a complex pattern of multiple stable solutions for a given value of the excitation frequency.
References
1.
B.
Vigna
, P.
Ferrari
, F.
Francesco Villa
, E.
Lasalandra
, and S.
Zerbini
, Silicon Sensors and Actuators: The Feynman Roadmap
(Springer
, 2022
).2.
C.
Touzé
and M.
Amabili
, “Nonlinear normal modes for damped geometrically nonlinear systems: Application to reduced-order modelling of harmonically forced structures
,” J. Sound Vib.
298
, 958
–981
(2006
).3.
O.
Thomas
, C.
Touzé
, and A.
Chaigne
, “Non-linear vibrations of free-edge thin spherical shells: Modal interaction rules and 1:1:2 internal resonance
,” Int. J. Solids Struct.
42
, 3339
–3373
(2005
).4.
G.
Gobat
, L.
Guillot
, A.
Frangi
, B.
Cochelin
, and C.
Touzé
, “Backbone curves, Neimark-sacker boundaries and appearance of quasi-periodicity in nonlinear oscillators: Application to 1:2 internal resonance and frequency combs in MEMS
,” Meccanica
56
, 1937
–1969
(2021
).5.
A.
Givois
, C.
Giraud-Audine
, J.-F.
Deü
, and O.
Thomas
, “Experimental analysis of nonlinear resonances in piezoelectric plates with geometric nonlinearities
,” Nonlinear Dyn.
102
, 1451
–1462
(2020
).6.
D. A.
Czaplewski
, S.
Strachan
, O.
Shoshani
, S. W.
Shaw
, and D.
López
, “Bifurcation diagram and dynamic response of a MEMS resonator with a 1:3 internal resonance
,” Appl. Phys. Lett.
114
, 254104
(2019
).7.
G.
Gobat
, V.
Zega
, P.
Fedeli
, L.
Guerinoni
, C.
Touzé
, and A.
Frangi
, “Reduced order modelling and experimental validation of a MEMS gyroscope test-structure exhibiting 1: 2 internal resonance
,” Sci. Rep.
11
, 16390
(2021
).8.
A.
Hajjaj
, N.
Jaber
, M.
Hafiz
, S.
Ilyas
, and M.
Younis
, “Multiple internal resonances in MEMS arch resonators
,” Phys. Lett. A
382
, 3393
–3398
(2018
).9.
L.
Ruzziconi
, N.
Jaber
, L.
Kosuru
, M. L.
Bellaredj
, and M. I.
Younis
, “Two-to-one internal resonance in the higher-order modes of a MEMS beam: Experimental investigation and theoretical analysis via local stability theory
,” Int. J. Non-Linear Mech.
129
, 103664
(2021
).10.
F. K.
Alfosail
, A. Z.
Hajjaj
, and M. I.
Younis
, “Theoretical and experimental investigation of two-to-one internal resonance in MEMS arch resonators
,” J. Comput. Nonlinear Dyn.
14
, 011001
(2019
).11.
A.
Hajjaj
, F.
Alfosail
, N.
Jaber
, S.
Ilyas
, and M.
Younis
, “Theoretical and experimental investigations of the crossover phenomenon in micromachined arch resonator: Part II—Simultaneous 1:1 and 2:1 internal resonances
,” Nonlinear Dyn.
99
, 407
–432
(2020
).12.
A.
Keşkekler
, H.
Arjmandi-Tash
, P. G.
Steeneken
, and F.
Alijani
, “Symmetry-breaking-induced frequency combs in graphene resonators
,” Nano Lett.
22
, 6048
–6054
(2022
).13.
S.
Lenci
, F.
Clementi
, L.
Kloda
, J.
Warminski
, and G.
Rega
, “Longitudinal–transversal internal resonances in Timoshenko beams with an axial elastic boundary condition
,” Nonlinear Dyn.
103
, 3489
–3513
(2021
).14.
Z.
Shami
, Y.
Shen
, C.
Giraud-Audine
, C.
Touzé
, and O.
Thomas
, “Nonlinear dynamics of coupled oscillators in 1:2 internal resonance: Effects of the non-resonant quadratic terms and recovery of the saturation effect
,” Meccanica
(2022
).15.
G.
Kerschen
, M.
Peeters
, J.-C.
Golinval
, and A. F.
Vakakis
, “Nonlinear normal modes, part I: A useful framework for the structural dynamicist
,” Mech. Syst. Signal Process.
23
, 170
–194
(2009
).16.
M.
Peeters
, R.
Viguié
, G.
Sérandour
, G.
Kerschen
, and J.-C.
Golinval
, “Nonlinear normal modes, part II: Toward a practical computation using numerical continuation techniques
,” Mech. Syst. Signal Process.
23
, 195
–216
(2009
).17.
L.
Renson
, G.
Kerschen
, and B.
Cochelin
, “Numerical computation of nonlinear normal modes in mechanical engineering
,” J. Sound Vib.
364
, 177
–206
(2016
).18.
A.
Opreni
, N.
Boni
, R.
Carminati
, and A.
Frangi
, “Analysis of the nonlinear response of piezo-micromirrors with the harmonic balance method
,” in Actuators
(MDPI
, 2021
), Vol. 10
, p. 21
.19.
A.
Quarteroni
, A.
Manzoni
, and F.
Negri
, Reduced Basis Methods for Partial Differential Equations: An Introduction
(Springer
, 2015
), Vol. 92
.20.
S.
Pagani
, A.
Manzoni
, and A.
Quarteroni
, “Numerical approximation of parametrized problems in cardiac electrophysiology by a local reduced basis method
,” Comput. Methods Appl. Mech. Eng.
340
, 530
–558
(2018
).21.
C.
Touzé
, A.
Vizzaccaro
, and O.
Thomas
, “Model order reduction methods for geometrically nonlinear structures: A review of nonlinear techniques
,” Nonlinear Dyn.
105
, 1141
–1190
(2021
).22.
S.
Jain
, P.
Tiso
, J. B.
Rutzmoser
, and D. J.
Rixen
, “A quadratic manifold for model order reduction of nonlinear structural dynamics
,” Comput. Struct.
188
, 80
–94
(2017
).23.
A.
Vizzaccaro
, A.
Opreni
, L.
Salles
, A.
Frangi
, and C.
Touzé
, “High order direct parametrisation of invariant manifolds for model order reduction of finite element structures: Application to large amplitude vibrations and uncovering of a folding point
,” Nonlinear Dyn.
110
, 525
–571
(2022
).24.
A.
Opreni
, A.
Vizzaccaro
, C.
Touzé
, and A.
Frangi
, “High order direct parametrisation of invariant manifolds for model order reduction of finite element structures: Application to generic forcing terms and parametrically excited systems
,” ResearchSquare
(in press) (2022
).25.
A.
Givois
, J.-J.
Tan
, C.
Touzé
, and O.
Thomas
, “Backbone curves of coupled cubic oscillators in 1:1 internal resonance: Bifurcation scenario, measurements and parameter identification
,” Meccanica
55
, 481
–503
(2020
).26.
F.
Clementi
, S.
Lenci
, and G.
Rega
, “1:1 internal resonance in a two d.o.f. complete system: A comprehensive analysis and its possible exploitation for design
,” Meccanica
55
, 1309
–1332
(2020
).27.
M. I.
Younis
, MEMS Linear and Nonlinear Statics and Dynamics
(Springer Science & Business Media
, 2011
), Vol. 20
.28.
29.
A.
Devonshire
, “Theory of ferroelectrics
,” Adv. Phys.
3
, 85
–130
(1954
).30.
A.
Frangi
, A.
Opreni
, N.
Boni
, P.
Fedeli
, R.
Carminati
, M.
Merli
, and G.
Mendicino
, “Nonlinear response of PZT-actuated resonant micromirrors
,” J. Microelectromech. Syst.
29
, 1421
–1430
(2020
).31.
M. A.
Hopcroft
, W. D.
Nix
, and T. W.
Kenny
, “What is the young's modulus of silicon?
,” J. Microelectromech. Syst.
19
, 229
–238
(2010
).32.
M. J.
Haun
, E.
Furman
, S.
Jang
, H.
McKinstry
, and L.
Cross
, “Thermodynamic theory of PbTiO3
,” J. Appl. Phys.
62
, 3331
–3338
(1987
).33.
A.
Opreni
, A.
Vizzaccaro
, A.
Frangi
, and C.
Touzé
, “Model order reduction based on direct normal form: Application to large finite element MEMS structures featuring internal resonance
,” Nonlinear Dyn.
105
, 1237
–1272
(2021
).34.
M.
Cenedese
and G.
Haller
, “How do conservative backbone curves perturb into forced responses? A Melnikov function analysis
,” Proc. R. Soc. A
476
, 20190494
(2020
).35.
A.
Haro
, M.
Canadell
, J.-L.
Figueras
, A.
Luque
, and J.-M.
Mondelo
, The Parameterization Method for Invariant Manifolds
, Applied Mathematical Sciences Vol. 195
(Springer
, 2016
).36.
M.
Li
and G.
Haller
, “Nonlinear analysis of forced mechanical systems with internal resonance using spectral submanifolds, part II: Bifurcation and quasi-periodic response
,” Nonlinear Dyn.
110
, 1045
–1080
(2022
).37.
M.
Colin
, O.
Thomas
, S.
Grondel
, and E.
Cattan
, “Very large amplitude vibrations of flexible structures: Experimental identification and validation of a quadratic drag damping model
,” J. Fluids Struct.
97
, 103056
(2020
).38.
A.
Dhooge
, W.
Govaerts
, and Y. A.
Kuznetsov
, “Matcont: A Matlab package for numerical bifurcation analysis of odes
,” ACM Trans. Math. Softw.
29
, 141
–164
(2003
).39.
L.
Renson
, A. D.
Shaw
, D. A.
Barton
, and S.
Neild
, “Application of control-based continuation to a nonlinear structure with harmonically coupled modes
,” Mech. Syst. Signal Process.
120
, 449
–464
(2019
).40.
G.
Abeloos
, M.
Volvert
, and G.
Kerschen
, “Experimental characterization of superharmonic resonances using phase-lock loop and control-based continuation
,” in Nonlinear Structures & Systems
(Springer
, 2023
), Vol. 1
, pp. 131
–133
.© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.