Vibration energy harvesters that use resonance phenomena exhibit a high output power density for constant frequency vibrations, but they suffer from a significant drop in performance for non-steady-state vibrations, which are important for practical applications. In this work, we demonstrate that the output power under an impulsive force can be increased significantly by placing a U-shaped metal component, called a dynamic magnifier (DM), under an MEMS piezoelectric vibration energy harvester (MEMS-pVEH) with a 6 mm long cantilever using a 3 μm thick Pb(Zr,Ti)O3 film. Based on the results of numerical calculations using a model of pVEH with a two-degree-of-freedom (2DOF) system, the DM was designed to have the same resonant frequency as the MEMS-pVEH and a high mechanical quality factor (Qm). The waveforms of the output voltage of the fabricated 2DOF-pVEHs were measured for impulsive forces with various duration times, and the output power was calculated by integrating the waveforms over time. The output power of the MEMS-pVEH placed on the DM with a Qm of 56 showed a gradual change according to the duration of applying an impulsive force and a maximum of 19 nJ/G2 (G: gravitational acceleration) when the duration of the impulsive force was 3.8 ms. This result was about 90 times greater than the output power of the MEMS-pVEH without a DM. While it is not easy to fabricate pVEHs with a complex 2DOF structure using only the MEMS process, we have demonstrated that the output power can be significantly improved by adding a spring structure to a simple MEMS-pVEH.

1.
T.
Sanislav
,
G. D.
Mois
,
S.
Zeadally
, and
S. C.
Folea
,
IEEE Access
9
,
39530
(
2021
).
2.
N.
Garg
and
R.
Garg
, in
2017 International Conference on Intelligent Sustainable Systems
(
IEEE
,
2017
), p.
127
.
3.
M.
Shirvanimoghaddam
,
K.
Shirvanimoghaddam
,
M. M.
Abolhasani
,
M.
Farhangi
,
V.
Zahiri Barsari
,
H.
Liu
,
M.
Dohler
, and
M.
Naebe
,
IEEE Access
7
,
94533
(
2019
).
4.
S.
Priya
,
J. Electroceram.
19
,
167
(
2007
).
5.
H. S.
Kim
,
J. H.
Kim
, and
J.
Kim
,
Int. J. Precis. Eng. Manuf.
12
,
1129
(
2011
).
6.
J. Q.
Liu
,
H.
Bin Fang
,
Z. Y.
Xu
,
X. H.
Mao
,
X. C.
Shen
,
D.
Chen
,
H.
Liao
, and
B. C.
Cai
,
Microelectron. J.
39
,
802
(
2008
).
7.
M. T.
Todaro
,
F.
Guido
,
V.
Mastronardi
,
D.
Desmaele
,
G.
Epifani
,
L.
Algieri
, and
M.
De Vittorio
,
Microelectron. Eng.
183–184
,
23
(
2017
).
8.
S. S.
Bedair
,
J. S.
Pulskamp
,
R.
Rudy
,
R.
Polcawich
,
R.
Cable
, and
L.
Griffin
,
IEEE Electron Device Lett.
39
,
428
(
2018
).
9.
M.
Aramaki
,
K.
Izumi
,
T.
Yoshimura
,
S.
Murakami
,
K.
Satoh
,
K.
Kanda
, and
N.
Fujimura
,
Jpn. J. Appl. Phys.
57
,
11UD03
(
2018
).
10.
M.
Aramaki
,
T.
Yoshimura
,
S.
Murakami
,
K.
Satoh
, and
N.
Fujimura
,
Sens. Actuators, A
291
,
167
(
2019
).
11.
N.
Tran
,
M. H.
Ghayesh
, and
M.
Arjomandi
,
Int. J. Eng. Sci.
127
,
162
(
2018
).
12.
H.
Li
,
C.
Tian
, and
Z. D.
Deng
,
Appl. Phys. Rev.
1
,
041301
(
2014
).
13.
M.
Ferrari
,
V.
Ferrari
,
M.
Guizzetti
,
D.
Marioli
, and
A.
Taroni
,
Sens. Actuators, A
142
,
329
(
2008
).
14.
S. C.
Stanton
,
C. C.
McGehee
, and
B. P.
Mann
,
Appl. Phys. Lett.
95
,
174103
(
2009
).
15.
K. A.
Singh
,
R.
Kumar
, and
R. J.
Weber
,
IEEE Trans. Power Electron.
30
,
6763
(
2015
).
16.
A. F.
Arrieta
,
P.
Hagedorn
,
A.
Erturk
, and
D. J.
Inman
,
Appl. Phys. Lett.
97
,
104102
(
2010
).
17.
M.
Derakhshani
and
T. A.
Berfield
,
Shock Vib.
2019
,
6743676
.
18.
A. M.
Eltanany
,
T.
Yoshimura
,
N.
Fujimura
,
M. R.
Ebied
, and
M. G. S.
Ali
,
Jpn. J. Appl. Phys.
56
,
10PD02
(
2017
).
19.
V. R.
Challa
,
M. G.
Prasad
, and
F. T.
Fisher
,
Smart Mater. Struct.
20
,
025004
(
2011
).
20.
C. V.
Karadag
and
N.
Topaloglu
,
J. Vib. Acoust. Trans. ASME
139
,
011013
(
2017
).
21.
X.
Rui
,
Z.
Zeng
,
Y.
Zhang
,
Y.
Li
,
H.
Feng
,
X.
Huang
, and
Z.
Sha
,
IEEE Trans. Veh. Technol.
69
,
1440
(
2020
).
22.
Y. H.
Shin
,
J.
Choi
,
S. J.
Kim
,
S.
Kim
,
D.
Maurya
,
T. H.
Sung
,
S.
Priya
,
C. Y.
Kang
, and
H. C.
Song
,
Nano Energy
77
,
104986
(
2020
).
23.
G.
Shi
,
D.
Tong
,
Y.
Xia
,
S.
Jia
,
J.
Chang
,
Q.
Li
,
X.
Wang
,
H.
Xia
, and
Y.
Ye
,
Appl. Energy
310
,
118511
(
2022
).
24.
A.
Nastro
,
N.
Pienazza
,
M.
Baù
,
P.
Aceti
,
M.
Rouvala
,
R.
Ardito
,
M.
Ferrari
,
A.
Corigliano
, and
V.
Ferrari
,
Sensors
22
,
772
(
2022
).
25.
S.
Pyo
,
D. S.
Kwon
,
H. J.
Ko
,
Y.
Eun
, and
J.
Kim
,
Int. J. Precis. Eng. Manuf.-Green Technol.
9
,
241
(
2022
).
26.
K.
Fan
,
M.
Cai
,
F.
Wang
,
L.
Tang
,
J.
Liang
,
Y.
Wu
,
H.
Qu
, and
Q.
Tan
,
Energy Convers. Manag.
198
,
111820
(
2019
).
27.
S.
Ju
and
C. H.
Ji
,
Appl. Energy
214
,
139
(
2018
).
28.
M. A.
Halim
and
J. Y.
Park
,
Sens. Actuators, A
208
,
56
(
2014
).
29.
M. A.
Halim
,
S.
Khym
, and
J. Y.
Park
,
J. Appl. Phys.
114
,
044902
(
2013
).
30.
J.
Zhang
and
L.
Qin
,
Appl. Energy
240
,
26
(
2019
).
31.
H.
Fu
and
E. M.
Yeatman
,
Energy
125
,
152
(
2017
).
32.
I.
Izadgoshasb
,
Y. Y.
Lim
,
L.
Tang
,
R. V.
Padilla
,
Z. S.
Tang
, and
M.
Sedighi
,
Energy Convers. Manag.
184
,
559
(
2019
).
33.
S.
Aphayvong
,
T.
Yoshimura
,
S.
Murakami
,
K.
Kanda
, and
N.
Fujimura
,
Jpn. J. Appl. Phys.
59
,
SPPD04
(
2020
).
34.
O.
Aldraihem
and
A.
Baz
,
J. Intell. Mater. Syst. Struct.
22
,
521
(
2011
).
35.
L.
Tang
and
J.
Wang
,
Acta Mech.
229
,
4643
(
2018
).
36.
M.
Arafa
,
W.
Akl
,
A.
Aladwani
,
O.
Aldraihem
, and
A.
Baz
,
Proc. SPIE
7977
,
79770Q
(
2011
).
37.
M.
Aramaki
,
T.
Yoshimura
,
S.
Murakami
,
K.
Kanda
, and
N.
Fujimura
,
Appl. Phys. Lett.
114
,
133902
(
2019
).
38.
H.
Xiao
,
X.
Wang
, and
S.
John
,
Mech. Syst. Signal Process.
68–69
,
138
(
2016
).
39.
S. R. K.
Rodriguez
,
Eur. J. Phys.
37
,
025802
(
2016
).
You do not currently have access to this content.