The layered solid electrolyte Li2ZrCl6 and Li metal electrodes have a very good contact stability, but the thermal transport properties of Li2ZrCl6 are still unclear. Here, we systematically study the intrinsic lattice thermal conductivity (κp) of Li2ZrCl6 using the machine-learning potential approach based on first-principles calculations combined with the Boltzmann transport theory. The results show that the κp of Li2ZrCl6 at room temperature is 3.94 W/mK along the in-plane (IP) direction and 1.05 W/mK along the out-plane (OP) direction, which means that the κp is significantly anisotropic. In addition, under the compressive stress in the OP direction, the κp evolution along the IP and OP directions exhibits completely different trends, because the stress has a significant regulatory effect on the contribution of optical phonons to κp. With the increase in stress, the κp in the IP direction monotonically decreases, while the κp in the OP direction increases by a factor of 2.2 under a compressive strain of 13%. This is because the contribution of low-frequency optical phonons to κp in the IP direction is as high as 58% when no stress is applied, and this contribution is significantly suppressed with increasing compressive strain. However, the contribution of optical phonons in the OP direction to the κp increases with the increase in stress. Our results reveal the thermal transport properties of Li2ZrCl6 and the effect of the compressive strain on the κp of Li2ZrCl6, thereby providing a reference for the use of Li2ZrCl6 in Li-metal batteries.

1.
R.
Chen
,
Q.
Li
,
X.
Yu
,
L.
Chen
, and
H.
Li
,
Chem. Rev.
120
,
6820
(
2020
).
2.
C.
Xiang
,
C.-W.
Wu
,
W.-X.
Zhou
,
G.
Xie
, and
G.
Zhang
,
Front. Phys.
17
,
13202
(
2022
).
3.
C.-W.
Wu
,
X.
Ren
,
W.-X.
Zhou
,
G.
Xie
, and
G.
Zhang
,
APL Mater.
10
,
040902
(
2022
).
4.
R.
Kantharaj
and
A. M.
Marconnet
,
Nanoscale Micoscale Thermophys. Eng.
23
,
128
(
2019
).
5.
J. B.
Goodenough
and
K.-S.
Park
,
J. Am. Chem. Soc.
135
,
1167
(
2013
).
6.
M. L.
Sushko
,
K. M.
Rosso
,
J.-G.
Zhang
, and
J.
Liu
,
J. Phys. Chem. Lett.
2
,
2352
(
2011
).
7.
K.
Shah
,
V.
Vishwakarma
, and
A.
Jain
,
J. Electrochem. Energy Convers. Storage
13
,
030801
(
2016
).
8.
C.-W.
Wu
,
G.
Xie
, and
W.-X.
Zhou
,
Acta Phys. Sin.
71
,
026501
(
2022
).
9.
F.
Li
,
X.
Cheng
,
L.-L.
Lu
,
Y.-C.
Yin
,
J.-D.
Luo
,
G.
Lu
,
Y.-F.
Meng
,
H.
Mo
,
T.
Tian
,
J.-T.
Yang
,
W.
Wen
,
Z.-P.
Liu
,
G.
Zhang
,
C.
Shang
, and
H.-B.
Yao
,
Nano Lett.
22
,
2461
(
2022
).
10.
N.
Kamaya
,
K.
Homma
,
Y.
Yamakawa
,
M.
Hirayama
,
R.
Kanno
,
M.
Yone-mura
,
T.
Kamiyama
,
Y.
Kato
,
S.
Hama
, and
K.
Kawamoto
,
Nat. Mater.
10
,
682
(
2011
).
11.
R.
Murugan
,
V.
Thangadurai
, and
W.
Weppner
,
Angew. Chem., Int. Ed.
46
,
7778
(
2007
).
12.
Y.
Xia
,
T.
Fujieda
,
K.
Tatsumi
,
P. P.
Prosini
, and
T.
Sakai
,
J. Power Sources
92
,
234
(
2001
).
13.
H.
Chung
and
B.
Kang
,
Chem. Mater.
29
,
8611
(
2017
).
14.
R.
Chen
,
A. M.
Nolan
,
J.
Lu
,
J.
Wang
,
X.
Yu
,
Y.
Mo
,
L.
Chen
,
X.
Huang
, and
H.
Li
,
Joule
4
,
812
(
2020
).
15.
S.
Hu
,
Z.
Zhang
,
Z.
Wang
,
K.
Zeng
,
Y.
Cheng
,
J.
Chen
, and
G.
Zhang
,
ES Energy Environ.
1
,
74
(
2018
).
16.
T.
Feng
,
A.
O'Hara
, and
S. T.
Pantelides
,
Nano Energy
75
,
104916
(
2020
).
17.
H.
Yang
,
C. N.
Savory
,
B. J.
Morgan
,
D. O.
Scanlon
,
J. M.
Skelton
, and
A.
Walsh
,
Chem. Mater.
32
,
7542
(
2020
).
18.
Q.
Liu
,
S.
Li
,
S.
Wang
,
X.
Zhang
,
S.
Zhou
,
Y.
Bai
,
J.
Zheng
, and
X.
Lu
,
J. Phys. Chem. Lett.
9
,
5567
(
2018
).
19.
A. A.
Balandin
,
S.
Ghosh
,
W.
Bao
,
I.
Calizo
,
D.
Teweldebrhan
,
F.
Miao
, and
C. N.
Lau
,
Nano Lett.
8
,
902
(
2008
).
20.
A. A.
Balandin
,
ACS Nano
14
,
5170
(
2020
).
21.
H.
Meng
,
X.
Yu
,
H.
Feng
,
Z.
Xue
, and
N.
Yang
,
Int. J. Heat Mass Transfer
137
,
1241
(
2019
).
22.
P.
Goli
,
S.
Legedza
,
A.
Dhar
,
R.
Salgado
,
J.
Renteria
, and
A. A.
Balandin
,
J. Power Sources
248
,
37
(
2014
).
23.
N.
Mattila
and
A. J.
Karttunen
,
Mater. Res. Express
7
,
075502
(
2020
).
24.
A.
Abdullaev
,
A.
Mukanova
,
T.
Yakupov
,
A.
Mentbayeva
,
Z.
Bakenov
, and
Z.
Utegulov
,
Mater. Today Proc.
25
,
88
(
2020
).
25.
L.
Wei
,
Z.
Lu
,
F.
Cao
,
L.
Zhang
,
X.
Yang
,
X.
Yu
, and
L.
Jin
,
Int. J. Energy Res.
44
,
9466
(
2020
).
26.
B.
Zhao
,
L.
Jiang
,
X.
Zeng
,
K.
Zhang
,
M. M. F.
Yuen
,
J.-B.
Xu
,
X.-Z.
Fu
,
R.
Sun
, and
C.-P.
Wong
,
J. Mater. Chem. A
4
,
14595
(
2016
).
27.
X. K.
Chen
,
X. Y.
Hu
,
P.
Jia
,
Z. X.
Xie
, and
J.
Liu
,
Int. J. Mech. Sci.
206
,
106576
(
2021
).
28.
W.-X.
Zhou
,
Y.
Cheng
,
K.-Q.
Chen
,
G.
Xie
,
T.
Wang
, and
G.
Zhang
,
Adv. Funct. Mater.
30
,
1903829
(
2020
).
29.
A.
Suwardi
,
J.
Cao
,
L.
Hu
,
F.
Wei
,
J.
Wu
,
Y.
Zhao
,
S. H.
Lim
,
L.
Yang
,
X. Y.
Tan
, and
S. W.
Chien
,
J. Mater. Chem. A
8
,
18880
(
2020
).
30.
A.
Suwardi
,
J.
Cao
,
Y.
Zhao
,
J.
Wu
,
S. W.
Chien
,
X. Y.
Tan
,
L.
Hu
,
X.
Wang
,
W.
Wang
, and
D.
Li
,
Mater. Today Phys.
14
,
100239
(
2020
).
31.
Y.
Gan
,
C.-W.
Wu
,
Z.-X.
Xie
,
Y.-X.
Deng
,
Y.
Zhang
,
W.-X.
Zhou
, and
X.-K.
Chen
,
Langmuir
38
,
7733
(
2022
).
32.
C.-W.
Wu
,
X.
Ren
,
G.
Xie
,
W.-X.
Zhou
,
G.
Zhang
, and
K.-Q.
Chen
,
Phys. Rev. Appl.
18
,
014053
(
2022
).
33.
H.
Xie
,
T.
Ouyang
,
É.
Germaneau
,
G.
Qin
,
M.
Hu
, and
H.
Bao
,
Phys. Rev. B
93
,
075404
(
2016
).
34.
T.
Liu
,
J.
Liu
,
L.
Li
,
L.
Yu
,
J.
Diao
,
T.
Zhou
,
S.
Li
,
A.
Dai
,
W.
Zhao
,
S.
Xu
,
Y.
Ren
,
L.
Wang
,
T.
Wu
,
R.
Qi
,
Y.
Xiao
,
J.
Zheng
,
W.
Cha
,
R.
Harder
,
I.
Robinson
,
J.
Wen
,
J.
Lu
,
F.
Pan
, and
K.
Amine
,
Nature
606
,
305
(
2022
).
35.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
36.
B.
Mortazavi
,
I. S.
Novikov
,
E. V.
Podryabinkin
,
S.
Roche
,
T.
Rabczuk
,
A. V.
Shapeev
, and
X.
Zhuang
,
Appl. Mater. Today
20
,
100685
(
2020
).
37.
B.
Mortazavi
,
E. V.
Podryabinkin
,
I. S.
Novikov
,
T.
Rabczuk
,
X.
Zhuang
, and
A. V.
Shapeev
,
Comput. Phys. Commun.
258
,
107583
(
2021
).
38.
I. S.
Novikov
,
K.
Gubaev
,
E. V.
Podryabinkin
, and
A. V.
Shapeev
,
Mach. Learn.: Sci. Technol.
2
,
025002
(
2021
).
39.
Z.
Fan
,
Z.
Zeng
,
C.
Zhang
,
Y.
Wang
,
K.
Song
,
H.
Dong
,
Y.
Chen
, and
T.
Ala-Nissila
,
Phys. Rev. B
104
,
104309
(
2021
).
40.
W.-X.
Zhou
,
D.
Wu
,
G.
Xie
,
K.-Q.
Chen
, and
G.
Zhang
,
ACS Omega
5
,
5796
(
2020
).
41.
A.
Togo
and
I.
Tanaka
,
Scr. Mater.
108
,
1–5
(
2015
).
42.
P.-Z.
Jia
,
Z.-X.
Xie
,
Y.-X.
Deng
,
Y.
Zhang
,
L.-M.
Tang
,
W.-X.
Zhou
, and
K.-Q.
Chen
,
Appl. Phys. Lett.
121
,
043901
(
2022
).
43.
W.
Li
,
J.
Carrete
,
N. A.
Katcho
, and
N.
Mingo
,
Comput. Phys. Commun.
185
,
1747
(
2014
).
44.
M. D.
Santia
,
N.
Tandon
, and
J. D.
Albrecht
,
Appl. Phys. Lett.
107
,
041907
(
2015
).
45.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
46.
W.
Setyawan
and
S.
Curtarolo
,
Comput. Mater. Sci.
49
,
299
(
2010
).
47.
N.
Balke
,
S.
Jesse
,
A. N.
Morozovska
,
E.
Eliseev
,
D. W.
Chung
,
Y.
Kim
,
L.
Adamczyk
,
R. E.
Garcia
,
N.
Dudney
, and
S. V.
Kalinin
,
Nat. Nanotechnol.
5
,
749
(
2010
).
48.
J.-N.
Zhang
,
Q.
Li
,
C.
Ouyang
,
X.
Yu
,
M.
Ge
,
X.
Huang
,
E.
Hu
,
C.
Ma
,
S.
Li
, and
R.
Xiao
,
Nat. Energy
4
,
594
(
2019
).
49.
Y.
Li
,
J.
Liu
, and
X.
Wang
,
Appl. Phys. Lett.
119
,
041102
(
2021
).
50.
S.
Chae
,
K. A.
Mengle
,
R.
Lu
,
A.
Olvera
,
N.
Sanders
,
J.
Lee
,
P. F. P.
Poudeu
,
J. T.
Heron
, and
E.
Kioupakis
,
Appl. Phys. Lett.
117
,
102106
(
2020
).
51.
H.
Wang
,
D.
Wei
,
J.
Duan
,
Z.
Qin
,
G.
Qin
,
Y.
Yao
, and
M.
Hu
,
Nanotechnology
32
,
135401
(
2021
).
You do not currently have access to this content.