A solar thermophotovoltaic (STPV) system can transform incident concentrated solar energy into electrical energy with an efficiency that could be higher than the Shockley–Queisser limit. Near-field thermophotovoltaic (NF-TPV) devices can generate larger electrical power output than traditional far-field TPV devices with the aid of photon tunneling. Moreover, multi-junction PV cells can boost the performance of TPV devices by effectively distributing the absorbed photon energy inside the PV cell. In this work, we design a multi-junction-based near-field STPV system with a practical and high-temperature stable graphite intermediate structure. To optimize the system configuration, we employ a genetic algorithm and a surrogate model based on an artificial neural network, which enables us to suggest a better design approach for the multi-junction-based NF-STPV system between the power output density and power conversion efficiency maximization scenarios. When the concentration factor of the incident solar energy is 5000 and the absorber-to-emitter area ratio is 3, we can achieve a system efficiency of 23%. By introducing a material whose emissivity is as high as a blackbody on the solar absorber, the system efficiency can be further enhanced up to 35%.

1.
A.
Datas
and
R.
Vaillon
, “
Thermophotovoltaic energy conversion
,” in
Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion
(
Elsevier
,
2021
), pp.
285
308
.
2.
N.-P.
Harder
and
M. A.
Green
, “
Thermophotonics
,”
Semicond. Sci. Technol.
18
,
S270
S278
(
2003
).
3.
D.
Fan
,
T.
Burger
,
S.
McSherry
,
B.
Lee
,
A.
Lenert
, and
S. R.
Forrest
, “
Near-perfect photon utilization in an air-bridge thermophotovoltaic cell
,”
Nature
586
,
237
241
(
2020
).
4.
A.
LaPotin
,
K. L.
Schulte
,
M. A.
Steiner
,
K.
Buznitsky
,
C. C.
Kelsall
,
D. J.
Friedman
,
E. J.
Tervo
,
R. M.
France
,
M. R.
Young
,
A.
Rohskopf
,
S.
Verma
,
E. N.
Wang
, and
A.
Henry
, “
Thermophotovoltaic efficiency of 40%
,”
Nature
604
,
287
291
(
2022
).
5.
A.
Narayanaswamy
and
G.
Chen
, “
Surface modes for near field thermophotovoltaics
,”
Appl. Phys. Lett.
82
,
3544
3546
(
2003
).
6.
K.
Park
,
S.
Basu
,
W. P.
King
, and
Z. M.
Zhang
, “
Performance analysis of near-field thermophotovoltaic devices considering absorption distribution
,”
J. Quant. Spectrosc. Radiat. Transfer
109
,
305
316
(
2008
).
7.
M.
Francoeur
,
R.
Vaillon
, and
M. P.
Mengüç
, “
Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators
,”
IEEE Trans. Energy Convers.
26
,
686
698
(
2011
).
8.
R.
Vaillon
,
J.-P.
Pérez
,
C.
Lucchesi
,
D.
Cakiroglu
,
P.-O.
Chapuis
,
T.
Taliercio
, and
E.
Tournié
, “
Micron-sized liquid nitrogen-cooled indium antimonide photovoltaic cell for near-field thermophotovoltaics
,”
Opt. Express
27
,
A11
A24
(
2019
).
9.
S. P.
Philipps
,
F.
Dimroth
, and
A. W.
Bett
, “
High-efficiency III–V multijunction solar cells
,” in
McEvoy's Handbook of Photovoltaics
(
Academic Press
,
2018
), pp.
439
472
.
10.
Y.
Wang
,
H.
Liu
, and
J.
Zhu
, “
Solar thermophotovoltaics: Progress, challenges, and opportunities
,”
APL Mater.
7
,
080906
(
2019
).
11.
Y.
Nam
,
Y. X.
Yeng
,
A.
Lenert
,
P.
Bermel
,
I.
Celanovic
,
M.
Soljačić
, and
E. N.
Wang
, “
Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters
,”
Sol. Energy Mater. Sol. Cells
122
,
287
296
(
2014
).
12.
M.
Shimizu
,
A.
Kohiyama
, and
H.
Yugami
, “
High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter
,”
J. Photonics Energy
5
,
053099
(
2015
).
13.
Y.
Wang
,
L.
Zhou
,
Q.
Zheng
,
H.
Lu
,
Q.
Gan
,
Z.
Yu
, and
J.
Zhu
, “
Spectrally selective solar absorber with sharp and temperature dependent cut-off based on semiconductor nanowire arrays
,”
Appl. Phys. Lett.
110
,
201108
(
2017
).
14.
H.
Wang
,
H.
Alshehri
,
H.
Su
, and
L.
Wang
, “
Design, fabrication and optical characterizations of large-area lithography-free ultrathin multilayer selective solar coatings with excellent thermal stability in air
,”
Sol. Energy Mater. Sol. Cells
174
,
445
452
(
2018
).
15.
J.-W.
Cho
,
K.-J.
Lee
,
T.-I.
Lee
,
Y.-B.
Kim
,
D.-G.
Choi
,
Y.
Nam
, and
S.-K.
Kim
, “
Optical tunneling mediated sub-skin-depth high emissivity tungsten radiators
,”
Nano Lett.
19
,
7093
7099
(
2019
).
16.
M. A.
Abbas
,
J.
Kim
,
A. S.
Rana
,
I.
Kim
,
B.
Rehman
,
Z.
Ahmad
,
Y.
Massoud
,
J.
Seong
,
T.
Badloe
,
K.
Park
 et al., “
Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermophotovoltaic systems
,”
Nanoscale
14
,
6425
6436
(
2022
).
17.
M.
Shimizu
,
T.
Furuhashi
,
Z.
Liu
, and
H.
Yugami
, “
Highly confined spectrally selective absorber-emitter for effective solar thermophotovoltaics
,”
Sol. Energy Mater. Sol. Cells
245
,
111878
(
2022
).
18.
Z.
Omair
,
G.
Scranton
,
L. M.
Pazos-Outón
,
T. P.
Xiao
,
M. A.
Steiner
,
V.
Ganapati
,
P. F.
Peterson
,
J.
Holzrichter
,
H.
Atwater
, and
E.
Yablonovitch
, “
Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
15356
15361
(
2019
).
19.
T. C.
Narayan
,
L. Y.
Kuritzky
,
D. P.
Nizamian
,
B. A.
Johnson
,
E. J.
Tervo
,
A. R.
Young
,
C.
Luciano
,
M. K.
Arulanandam
,
B. M.
Kayes
,
E. E.
Perl
,
M.
Limpinsel
,
P.
Santhanam
,
J.
Slack
,
W.
Olavarria
,
J.
Carapella
,
M.
Young
,
C.-L.
Wu
,
Z. J.
Yu
,
Z. C.
Holman
,
R. R.
King
,
M. A.
Steiner
,
D. M.
Bierman
,
A. J.
Ponec
, and
J. A.
Briggs
, “
World record demonstration of > 30% thermophotovoltaic conversion efficiency
,” in
47th IEEE Photovoltaic Specialists Conference (PVSC)
(
IEEE
,
2020
), pp.
1792
1795
.
20.
C.
Lucchesi
,
D.
Cakiroglu
,
J.-P.
Perez
,
T.
Taliercio
,
E.
Tournié
,
P.-O.
Chapuis
, and
R.
Vaillon
, “
Near-field thermophotovoltaic conversion with high electrical power density and cell efficiency above 14%
,”
Nano Lett.
21
,
4524
4529
(
2021
).
21.
A.
Fiorino
,
L.
Zhu
,
D.
Thompson
,
R.
Mittapally
,
P.
Reddy
, and
E.
Meyhofer
, “
Nanogap near-field thermophotovoltaics
,”
Nat. Nanotechnol.
13
,
806
811
(
2018
).
22.
T.
Inoue
,
T.
Koyama
,
D. D.
Kang
,
K.
Ikeda
,
T.
Asano
, and
S.
Noda
, “
One-chip near-field thermophotovoltaic device integrating a thin-film thermal emitter and photovoltaic cell
,”
Nano Lett.
19
,
3948
3952
(
2019
).
23.
R.
Mittapally
,
B.
Lee
,
L.
Zhu
,
A.
Reihani
,
J. W.
Lim
,
D.
Fan
,
S. R.
Forrest
,
P.
Reddy
, and
E.
Meyhofer
, “
Near-field thermophotovoltaics for efficient heat to electricity conversion at high power density
,”
Nat. Commun.
12
,
4364
(
2021
).
24.
T.
Inoue
,
K.
Ikeda
,
B.
Song
,
T.
Suzuki
,
K.
Ishino
,
T.
Asano
, and
S.
Noda
, “
Integrated near-field thermophotovoltaic device overcoming blackbody limit
,”
ACS Photonics
8
,
2466
2472
(
2021
).
25.
J.
Song
,
J.
Jang
,
M.
Lim
,
M.
Choi
,
J.
Lee
, and
B. J.
Lee
, “
Thermophotovoltaic energy conversion in far-to-near-field transition regime
,”
ACS Photonics
9
,
1748
1756
(
2022
).
26.
G. R.
Bhatt
,
B.
Zhao
,
S.
Roberts
,
I.
Datta
,
A.
Mohanty
,
T.
Lin
,
J.-M.
Hartmann
,
R.
St-Gelais
,
S.
Fan
, and
M.
Lipson
, “
Integrated near-field thermo-photovoltaics for heat recycling
,”
Nat. Commun.
11
,
2545
(
2020
).
27.
J.
Seo
,
P.-H.
Jung
,
M.
Kim
,
S.
Yang
,
I.
Lee
,
J.
Lee
,
H.
Lee
, and
B. J.
Lee
, “
Design of a broadband solar thermal absorber using a deep neural network and experimental demonstration of its performance
,”
Sci. Rep.
9
,
15028
(
2019
).
28.
M. D.
McKay
,
R. J.
Beckman
, and
W. J.
Conover
, “
A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
,”
Technometrics
42
,
55
61
(
2000
).
29.
J. A.
Gonzalez-Cuevas
,
T. F.
Refaat
,
M. N.
Abedin
, and
H. E.
Elsayed-Ali
, “
Calculations of the temperature and alloy composition effects on the optical properties of AlxGa1−xAsySb1−y and GaxIn1−xAsySb1−y in the spectral range 0.5–6 eV
,”
J. Appl. Phys.
102
,
014504
(
2007
).
30.
M.
Sotoodeh
,
A. H.
Khalid
, and
A. A.
Rezazadeh
, “
Empirical low-field mobility model for III–V compounds applicable in device simulation codes
,”
J. Appl. Phys.
87
,
2890
2900
(
2000
).
31.
J.
Song
,
M.
Choi
,
M.
Lim
,
J.
Lee
, and
B. J.
Lee
, “
Comprehensive analysis of an optimized near-field tandem thermophotovoltaic converter
,”
Sol. Energy Mater. Sol. Cells
236
,
111522
(
2022
).
32.
E. D.
Palik
,
Handbook of Optical Constants of Solids
(
Academic Press
,
San Diego, CA
,
1985
), Vol.
1
.
33.
A. D.
Rakić
,
A. B.
Djurišić
,
J. M.
Elazar
, and
M. L.
Majewski
, “
Optical properties of metallic films for vertical-cavity optoelectronic devices
,”
Appl. Opt.
37
,
5271
5283
(
1998
).
34.
Q.
Ni
,
R.
McBurney
,
H.
Alshehri
, and
L.
Wang
, “
Theoretical analysis of solar thermophotovoltaic energy conversion with selective metafilm and cavity reflector
,”
Sol. Energy
191
,
623
628
(
2019
).
35.
G.
Neuer
, “
Spectral and total emissivity measurements of highly emitting materials
,”
Int. J. Thermophys.
16
,
257
265
(
1995
).
36.
B.
Lee
,
R.
Lentz
,
T.
Burger
,
B.
Roy-Layinde
,
J.
Lim
,
R. M.
Zhu
,
D.
Fan
,
A.
Lenert
, and
S. R.
Forrest
, “
Air-bridge Si thermophotovoltaic cell with high photon utilization
,”
ACS Energy Lett.
7
,
2388
2392
(
2022
).
37.
T.
Liao
,
Z.
Yang
,
W.
Peng
,
X.
Chen
, and
J.
Chen
, “
Parametric characteristics and optimum criteria of a near-field solar thermophotovoltaic system at the maximum efficiency
,”
Energy Convers. Manage.
152
,
214
220
(
2017
).
38.
M.
Elzouka
and
S.
Ndao
, “
Towards a near-field concentrated solar thermophotovoltaic microsystem: Part I–Modeling
,”
Sol. Energy
141
,
323
333
(
2017
).
You do not currently have access to this content.