Piezoelectric microelectromechanical systems (piezoMEMS) enable dense arrays of actuators which are often driven to higher electrical fields than their bulk piezoelectric counterparts. In bulk ceramics, high field driving causes internal heating of the piezoelectric, largely due to field-induced domain wall motion. Self-heating is then tracked as a function of vibration velocity to determine the upper bound for the drive levels. However, the literature is limited concerning self-heating in thin film piezoMEMS. In this work, it is shown that self-heating in piezoMEMS transducer arrays occurs due to domain wall motion and Ohmic losses. This was demonstrated via a systematic study of drive waveform dependence of self-heating in piezoMEMS arrays. In particular, the magnitude of self-heating was quantified as a function of different waveform parameters (e.g., amplitude, DC offset, and frequency). Thermal modeling of the self-heating of piezoMEMS using the measured hysteresis loss from electrical characterization as the heat source was found to be in excellent agreement with the experimental data. The self-heating model allows improved thermal design of piezoMEMS and can, furthermore, be utilized for functional heating, especially for device level poling.

1.
I.
Mayergoyz
,
The Science of Hysteresis
(
Academic Press
,
Oxford
,
2006
), Vol.
III
.
2.
K.
Uchino
,
J. H.
Zheng
,
Y.
Gao
,
S.
Ural
,
S.-H.
Park
,
N.
Bhattacharya
, and
S.
Hirose
, “
Loss mechanisms and high-power piezoelectric components
,” in
Handbook of Advanced Dielectric, Piezoelectric, and Ferroelectric Materials
, edited by Z.-G. Ye (
Woodhead Publishing Limited
,
Cambridge
,
2008
).
3.
S.
Takahashi
,
M.
Yamamoto
, and
Y.
Sasaki
, “
Nonlinear piezoelectric effect in ferroelectric ceramics
,”
Jpn. J. Appl. Phys.
37
(
9B
),
5292
5296
(
1998
).
4.
K.
Uchino
and
S.
Hirose
, “
Loss mechanisms in piezoelectrics: How to measure different losses separately
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
48
(
1
),
307
321
(
2001
).
5.
M.
Hagiwara
,
S.
Takahashi
,
T.
Hoshina
,
H.
Takeda
, and
T.
Tsurumi
, “
Analysis of nonlinear transient responses of piezoelectric resonators
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
(
9
),
1721
1729
(
2011
).
6.
Y. S.
Touloukian
, “
Thermal conductivity: Nonmetallic solids
,” in
Thermophysical Properties of Matter
(
Springer
,
1971
), Vol.
2
.
7.
J. S.
Lundh
,
W.
Zhu
,
S.
Won Ko
,
C.
Fragkiadakis
,
P.
Mardilovich
,
S.
Trolier-McKinstry
, and
S.
Choi
, “
Local measurements of domain wall-induced self-heating in released PbZr0.52Ti0.48O3 films
,”
J. Appl. Phys.
128
,
214102
(
2020
).
8.
N.
Bassiri Gharb
,
I.
Fujii
,
E.
Hong
,
S.
Trolier-McKinstry
,
D. V.
Taylor
, and
D.
Damjanovic
, “
Domain wall contributions to the properties of piezoelectric thin films
,”
J. Electroceram.
19
,
47
65
(
2007
).
9.
F.
Xu
,
S.
Trolier-McKinstry
,
W.
Ren
,
B. M.
Xu
,
Z. L.
Xie
, and
K. L.
Hemker
, “
Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films
,”
J. Appl. Phys.
89
(
2
),
1336
1348
(
2001
).
10.
R.
Keech
,
C.
Morandi
,
M.
Wallace
,
G.
Esteves
,
L.
Denis
,
J.
Guerrier
,
R. L.
Johnson-Wilke
,
C. M.
Fancher
,
J. L.
Jones
, and
S.
Trolier-McKinstry
, “
Thickness dependent domain reorientation in 70/30 lead magnesium niobate–lead titanate thin films
,”
J. Am. Ceram. Soc.
100
(
9
),
3961
3972
(
2017
).
11.
M.
Wallace
,
R. L.
Johnson-Wilke
,
G.
Esteves
,
C. M.
Fancher
,
R. H. T.
Wilke
,
J. L.
Jones
, and
S.
Trolier-McKinstry
, “
In situ measurement of increased ferroelectric/ferroelastic domain wall motion in declamped tetragonal lead zirconate titanate thin films
,”
J. Appl. Phys.
117
,
054103
(
2015
).
12.
R. L.
Johnson-Wilke
,
R. H. T.
Wilke
,
M.
Wallace
,
A.
Rajashekhar
,
G.
Esteves
,
Z.
Merritt
,
J. L.
Jones
, and
S.
Trolier-McKinstry
, “
Ferroelectric/ferroelastic domain wall motion in dense and porous tetragonal lead zirconate titanate films
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
62
(
1
),
46
55
(
2015
).
13.
P.
Mardilovich
,
C.
Fragkiadakis
,
S. W.
Ko
, and
S.
Sivaramakrishnan
, “
A new standard for thin film actuator with sol-gel PZT
,” in
Proceedings of Printing for Fabrication (NIP 2017), Denver, CO
(
Society for Imaging Science and Technology
,
2017
), pp.
133
135
.
14.
R.
Borrell
, “
The adoption of thin film PZT Si-MEMS inkjet printheads in industrial applications: The Xaar 5601
,” in
Digital Printing Conference
, Barcelona,
2017
.
15.
Keithley Instruments Inc.
,
Low Level Measurements Handbook
, 7th ed. (
Keithley Instruments Inc
.,
2013
).
16.
R.
Yimnirun
,
S.
Wongsainmai
,
Y.
Laosiritaworn
, and
S.
Ananta
, “
Uniaxial stress dependence and scaling behavior of dynamic hysteresis responses in soft PZT ceramics
,” in
Proceedings of 2006 15th IEEE International Symposium on Applications of Ferroelectrics
(
IEEE
,
2007
), pp.
37
41
.
17.
K.
Uchino
,
Y.
Zhuang
, and
S.
Ural
, “
Loss determination methodology for a piezoelectric ceramics: New phenomenological theory and experimental proposals
,”
J. Adv. Dielectr.
1
(
1
),
17
31
(
2011
).
18.
W.
Shi
,
H. N.
Shekhani
,
H.
Zhap
,
J.
Ma
,
Y.
Yao
, and
K.
Uchino
, “
Losses in piezoelectric derived from a new equivalent circuit
,”
J. Electroceram.
35
,
1
10
(
2015
).
19.
L. M.
Weiland
and
C. S.
Lynch
, “
Thermo-electro-mechanical behavior of ferreoelctric materials part II: Introduction of rate and self-heating effects
,”
J. Intell. Mat. Syst. Struct.
14
,
605
621
(
2003
).
20.
J.-M.
Liu
,
H. L.
Chan
, and
C. L.
Choy
, “
Scaling behavior of dynamic hysteresis in multi-domain spin systems
,”
Mat. Lett.
52
,
213
219
(
2002
).
21.
C.
Fragkiadakis
,
P.
Mardilovich
, and
S.
Trolier-McKinstry
, “
A method of poling piezoelectric elements of an actuator
,” No. GB 25770707 B,
2021
.
You do not currently have access to this content.