Magnetic skyrmions are nanoscale topologically nontrivial spin texture that offer great promise as information carriers for the next-generation spintronic computing schemes. However, the current skyrmion-based logic gates require precise control of skyrmion collisions through clocked synchronizers, which leads to the complexity of logic implementation. To address this challenge, we propose a clockless skyrmion logic gate that can be implemented into large-scale computing networks without skyrmions synchronization. The clockless operations are achieved in a cross-shaped skyrmion track based on the skyrmion gating method with the aid of the voltage-controlled magnetic anisotropy gate. A complete set of Boolean operations and a cascaded full adder can be realized through the different combinations of inputs and interconnections of these logic gates. This computing paradigm paves the way for the design of a highly efficient and robust computing architecture using fully skyrmion-based logic devices.

1.
K.
Bernstein
,
R. K.
Cavin
,
W.
Porod
,
A.
Seabaugh
, and
J.
Welser
, “
Device and architecture outlook for beyond CMOS switches
,”
Proc. IEEE
98
,
2169
2184
(
2010
).
2.
D. E.
Nikonov
and
I. A.
Young
, “
Overview of beyond-CMOS devices and a uniform methodology for their benchmarking
,”
Proc. IEEE
101
,
2498
2533
(
2013
).
3.
V. V.
Zhirnov
,
R. K.
Cavin
,
J. A.
Hutchby
, and
G. I.
Bourianoff
, “
Limits to binary logic switch scaling - A gedanken model
,”
Proc. IEEE
9
,
1934
1939
(
2003
).
4.
S.
Luo
and
L.
You
, “
Skyrmion devices for memory and logic applications
,”
APL Mater.
9
,
050901
(
2021
).
5.
H.
Vakili
,
J.-W.
Xu
,
W.
Zhou
,
M. N.
Sakib
,
M. G.
Morshed
,
T.
Hartnett
,
Y.
Quessab
,
K.
Litzius
,
C. T.
Ma
,
S.
Ganguly
,
M. R.
Stan
,
P. V.
Balachandran
 et al, “
Skyrmionics—Computing and memory technologies based on topological excitations in magnets
,”
J. Appl. Phys.
130
,
070908
(
2021
).
6.
U. K.
Rössler
,
A. N.
Bogdanov
, and
C.
Pfleiderer
, “
Spontaneous skyrmion ground states in magnetic metals
,”
Nature
442
,
797
801
(
2006
).
7.
S.
Mühlbauer
,
B.
Binz
,
F.
Jonietz
,
C.
Pfleiderer
,
A.
Rosch
,
A.
Neubauer
,
R.
Georgii
, and
P.
Böni
, “
Skyrmion lattice in a chiral magnet
,”
Science
323
,
915
919
(
2009
).
8.
O.
Boulle
,
J.
Vogel
,
H.
Yang
,
S.
Pizzini
,
D.
de Souza Chaves
,
A.
Locatelli
,
T. O.
Menteş
,
A.
Sala
,
L. D.
Buda-Prejbeanu
,
O.
Klein
,
M.
Belmeguenai
,
Y.
Roussigné
 et al, “
Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures
,”
Nat. Nanotechnol.
11
,
449
454
(
2016
).
9.
S.
Woo
,
K.
Litzius
,
B.
Krüger
,
M.-Y.
Im
,
L.
Caretta
,
K.
Richter
,
M.
Mann
,
A.
Krone
,
R. M.
Reeve
,
M.
Weigand
,
P.
Agrawal
,
I.
Lemesh
 et al, “
Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets
,”
Nat. Mater.
15
,
501
506
(
2016
).
10.
X.
Zhang
,
G. P.
Zhao
,
H.
Fangohr
,
J. P.
Liu
,
W. X.
Xia
,
J.
Xia
, and
F. J.
Morvan
, “
Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory
,”
Sci. Rep.
5
,
7643
(
2015
).
11.
R.
Tomasello
,
E.
Martinez
,
R.
Zivieri
,
L.
Torres
,
M.
Carpentieri
, and
G.
Finocchio
, “
A strategy for the design of skyrmion racetrack memories
,”
Sci. Rep.
4
,
6784
(
2015
).
12.
W.
Kang
,
Y.
Huang
,
C.
Zheng
,
W.
Lv
,
N.
Lei
,
Y.
Zhang
,
X.
Zhang
,
Y.
Zhou
, and
W.
Zhao
, “
Voltage controlled magnetic skyrmion motion for racetrack memory
,”
Sci. Rep.
6
,
23164
(
2016
).
13.
M.
Fattouhi
,
K. Y.
Mak
,
Y.
Zhou
,
X.
Zhang
,
X.
Liu
, and
M.
El Hafidi
, “
Logic gates based on synthetic antiferromagnetic bilayer skyrmions
,”
Phys. Rev. Appl.
16
,
014040
(
2021
).
14.
Z. R.
Yan
,
Y. Z.
Liu
,
Y.
Guang
,
K.
Yue
,
J. F.
Feng
,
R. K.
Lake
,
G. Q.
Yu
, and
X. F.
Han
, “
Skyrmion-based programmable logic device with complete Boolean logic functions
,”
Phys. Rev. Appl.
15
,
064004
(
2021
).
15.
K. Y.
Mak
,
J.
Xia
,
X.-C.
Zhang
,
L.
Li
,
M.
Fattouhi
,
M.
Ezawa
,
X.-X.
Liu
, and
Y.
Zhou
, “
Single-bit full adder and logic gate based on synthetic antiferromagnetic bilayer skyrmions
,”
Rare Met.
41
,
2249
(
2022
).
16.
J.
Wang
,
J.
Xia
,
X.
Zhang
,
X.
Zheng
,
G.
Li
,
L.
Chen
,
Y.
Zhou
,
J.
Wu
,
H.
Yin
,
R.
Chantrell
, and
Y.
Xu
, “
Magnetic skyrmionium diode with a magnetic anisotropy voltage gating
,”
Appl. Phys. Lett.
117
,
202401
(
2020
).
17.
M.
Song
,
M. G.
Park
,
S.
Ko
,
S. K.
Jang
,
M.
Je
, and
K.-J.
Kim
, “
Logic device based on skyrmion annihilation
,”
IEEE Trans. Electron Devices
68
,
1939
1943
(
2021
).
18.
X.
Zhang
,
M.
Ezawa
, and
Y.
Zhou
, “
Magnetic skyrmion logic gates: Conversion, duplication and merging of skyrmions
,”
Sci. Rep.
5
,
9400
(
2015
).
19.
S.
Luo
,
M.
Song
,
X.
Li
,
Y.
Zhang
,
J.
Hong
,
X.
Yang
,
X.
Zou
,
N.
Xu
, and
L.
You
, “
Reconfigurable skyrmion logic gates
,”
Nano Lett.
18
,
1180
1184
(
2018
).
20.
B.
Paikaray
,
M.
Kuchibhotla
,
A.
Haldar
, and
C.
Murapaka
, “
Reconfigurable logic operations via gate controlled skyrmion motion in a nanomagnetic device
,”
ACS Appl. Electron. Mater.
4
,
2290
2297
(
2022
).
21.
R.
Tomasello
,
A.
Giordano
,
F.
Garescì
,
G.
Siracusano
,
S.
de Caro
,
C.
Ciminelli
,
M.
Carpentieri
, and
G.
Finocchio
, “
Role of magnetic skyrmions for the solution of the shortest path problem
,”
J. Magn. Magn. Mater.
532
,
167977
(
2021
).
22.
K. M.
Song
,
J.-S.
Jeong
,
B.
Pan
,
X.
Zhang
,
J.
Xia
,
S.
Cha
,
T.-E.
Park
,
K.
Kim
,
S.
Finizio
,
J.
Raabe
,
J.
Chang
,
Y.
Zhou
 et al, “
Skyrmion-based artificial synapses for neuromorphic computing
,”
Nat. Electron.
3
,
148
155
(
2020
).
23.
R.
Chen
,
Y.
Li
,
V. F.
Pavlidis
, and
C.
Moutafis
, “
Skyrmionic interconnect device
,”
Phys. Rev. Res.
2
,
043312
(
2020
).
24.
M. A.
Brems
,
M.
Kläui
, and
P.
Virnau
, “
Circuits and excitations to enable Brownian token-based computing with skyrmions
,”
Appl. Phys. Lett.
119
,
132405
(
2021
).
25.
M.
Chauwin
,
X.
Hu
,
F.
Garcia-Sanchez
,
N.
Betrabet
,
A.
Paler
,
C.
Moutafis
, and
J. S.
Friedman
, “
Skyrmion logic system for large-scale reversible computation
,”
Phys. Rev. Appl.
12
,
64053
(
2019
).
26.
B. W.
Walker
,
C.
Cui
,
F.
Garcia-Sanchez
,
J. A. C.
Incorvia
,
X.
Hu
, and
J. S.
Friedman
, “
Skyrmion logic clocked via voltage-controlled magnetic anisotropy
,”
Appl. Phys. Lett.
118
,
192404
(
2021
).
27.
Y.
Bai
,
R. F.
Demara
,
J.
Di
, and
M.
Lin
, “
Clockless spintronic logic: A robust and ultra-low power computing paradigm
,”
IEEE Trans. Comput.
67
,
631
645
(
2018
).
28.
X.
Xing
,
P. W. T.
Pong
, and
Y.
Zhou
, “
Skyrmion domain wall collision and domain wall-gated skyrmion logic
,”
Phys. Rev. B
94
,
54408
(
2016
).
29.
J.-Q.
Lin
,
J.-P.
Chen
,
Z.-Y.
Tan
,
Y.
Chen
,
Z.-F.
Chen
,
W.-A.
Li
,
X.-S.
Gao
, and
J.-M.
Liu
, “
Manipulation of skyrmion motion dynamics for logical device application mediated by inhomogeneous magnetic anisotropy
,”
Nanomaterials
12
,
278
(
2022
).
30.
W.
Kang
,
C.
Zheng
,
Y.
Huang
,
X.
Zhang
,
Y.
Zhou
,
W.
Lv
, and
W.
Zhao
, “
Complementary skyrmion racetrack memory with voltage manipulation
,”
IEEE Electron Device Lett.
37
,
924
927
(
2016
).
31.
A.
Mousavi Cheghabouri
,
F.
Katmis
, and
M. C.
Onbasli
, “
Cascadable direct current driven skyrmion logic inverter gate
,”
Phys. Rev. B
105
,
054411
(
2022
).
32.
L. M.
Goldschlager
, “
The monotone and planar circuit value problems are log space complete for P
,”
ACM Sigact News
9
,
25
29
(
1977
).
33.
M.
Donahue
,
OOMMF User's Guide, Version 1.0.-6376
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
1999
).
34.
P.
Lai
,
G. P.
Zhao
,
H.
Tang
,
N.
Ran
,
S. Q.
Wu
,
J.
Xia
,
X.
Zhang
, and
Y.
Zhou
, “
An improved racetrack structure for transporting a skyrmion
,”
Sci. Rep.
7
,
45330
(
2017
).
35.
X.
Zhang
,
Y.
Zhou
, and
M.
Ezawa
, “
Magnetic bilayer-skyrmions without skyrmion Hall effect
,”
Nat. Commun.
7
,
10293
(
2016
).
36.
D. A.
Allwood
,
G.
Xiong
,
C. C.
Faulkner
,
D.
Atkinson
,
D.
Petit
, and
R. P.
Cowburn
, “
Magnetic domain-wall logic
,”
Science
309
,
1688
1692
(
2005
).
37.
S. N.
Kukreja
and
I.-N.
Chen
, “
Combinational and sequential cellular structures
,”
IEEE Trans. Comput.
C-22
,
813
823
(
1973
).

Supplementary Material

You do not currently have access to this content.