A normally off hydrogen-terminated diamond (H-diamond) metal-oxide-semiconductor field effect transistor (MOSFET) is realized by using lanthanum oxide (La2O3) gate dielectric. The threshold voltage is demonstrated to be −0.797 V, indicating that the La2O3-gated H-diamond MOSFET has normally off characteristics. The normally off mode could be greatly ascribed to the low work function of La2O3. Based on the capacitance–voltage (C–V) curves, the dielectric constant of La2O3 is calculated to be as high as 25.6. Moreover, the small hysteresis voltage extracted from the C–V curves exhibits low trapped charge density in the La2O3 layer. The maximum drain–source current, maximum transconductance, subthreshold swing, effective mobility, current on/off ratio, and sheet hole density of La2O3-gated MOSFET with a gate length of 2 μm are calculated to be −13.55 mA/mm, 4.37 mS/mm, 161 mV/dec, 202.2 cm2/V·s, 108, and 6.53 × 1012 cm−2, respectively. This work will significantly promote the development of normally off H-diamond MOSFET devices.

1.
A. Q.
Huang
,
IEEE Electron Device Lett.
25
,
298
(
2004
).
2.
J.
Isberg
,
J.
Hammersberg
,
E.
Johansson
,
T.
Wikström
,
D. J.
Twitchen
,
A. J.
Whitehead
,
S. E.
Coe
, and
G. A.
Scarsbrook
,
Science
297
,
1670
(
2002
).
3.
J. W.
Liu
,
H.
Oosato
,
B.
Da
, and
Y.
Koide
,
Appl. Phys. Lett.
117
,
163502
(
2020
).
4.
D.
Kueck
,
H. E.
Hajj
,
A.
Kaiser
, and
E.
Kohn
,
Diamond Relat. Mater.
17
,
732
(
2008
).
5.
R.
Edgington
,
S.
Sato
,
Y.
Ishiyama
,
R.
Morris
,
R. B.
Jackman
, and
H.
Kawarada
,
J. Appl. Phys.
111
,
033710
(
2012
).
6.
Y.
Fu
,
Y.
Chang
,
X.
Zhu
,
R.
Xu
,
Y.
Xu
, and
H.
Kawarada
, in
IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD)
,
2022
, Vol.
121
.
7.
H.
Kawarada
,
Surf. Sci. Rep.
26
,
205
(
1996
).
8.
C. E.
Nebel
,
C.
Sauerer
,
F.
Ertl
,
M.
Stutzmann
,
C. F. O.
Graeff
,
P.
Bergonzo
,
O. A.
Williams
, and
R.
Jackman
,
Appl. Phys. Lett.
79
,
4541
(
2001
).
9.
W.
Wang
,
C.
Hu
,
S. Y.
Li
,
F. N.
Li
,
Z. C.
Liu
,
F.
Wang
,
J.
Fu
, and
H. X.
Wang
,
J. Nanomaterials
2015
,
124640
.
10.
J. W.
Liu
,
M. Y.
Liao
,
M.
Imura
, and
Y.
Koide
,
J. Appl. Phys.
120
,
124504
(
2016
).
11.
Y. F.
Wang
,
W.
Wang
,
H. N.
Abbasi
,
X. H.
Chang
,
X. F.
Zhang
, and
T. F.
Zhu
,
IEEE Electron Device Lett.
41
,
808
(
2020
).
12.
Z. Y.
Ren
,
J. F.
Zhang
,
J. C.
Zhang
,
C. F.
Zhang
,
S. R.
Xu
,
Y.
Li
, and
Y.
Hao
,
IEEE Electron Device Lett.
38
,
786
(
2017
).
13.
J. W.
Liu
,
H.
Ohsato
,
M. Y.
Liao
,
M.
Imura
,
E.
Watanabe
, and
Y.
Koide
,
IEEE Electron Device Lett.
38
,
922
(
2017
).
14.
S.
Halas
and
T.
Durakiewicz
,
Appl. Surf. Sci.
252
,
6119
(
2006
).
15.
I. Z.
Mitrovic
,
M.
Althobaiti
,
A. D.
Weerakkody
,
V. R.
Dhanak
,
W. M.
Linhart
,
T. D.
Veal
,
N.
Sedghi
,
S.
Hall
,
P. R.
Chalker
,
D.
Tsoutsou
, and
A.
Dimoulas
,
J. Appl. Phys.
115
,
114102
(
2014
).
16.
S. W.
Kang
and
S. W.
Rhee
,
J. Electrochem. Soc.
149
,
C345
(
2002
).
17.
S.
Ohmi
,
C.
Kobayashi
,
I.
Kashiwagi
,
C.
Ohshima
,
H.
Ishiwara
, and
H.
Iwai
,
J. Electrochem. Soc.
150
,
F134
(
2003
).
18.
Y. H.
Wu
,
M. Y.
Yang
,
A.
Chin
,
W. J.
Chen
, and
C. M.
Kwei
,
IEEE Electron Device Lett.
21
,
341
(
2000
).
19.
C. H.
Hsu
,
M. T.
Wang
, and
J. Y. M.
Lee
,
J. Appl. Phys.
100
,
074108
(
2006
).
20.
C. Y.
Chang
,
C.
Yokoyama
,
M.
Takenaka
, and
S.
Takagi
,
IEEE Trans. Electron Devices
64
,
2519
(
2017
).
21.
C.
Henkel
,
S.
Abermann
,
O.
Bethge
,
G.
Pozzovivo
,
P.
Klang
,
M.
Reiche
, and
E.
Bertagnolli
,
IEEE Trans. Electron Devices
57
,
3295
(
2010
).
22.
D. H.
Zadeh
,
H.
Oomine
,
Y.
Suzuki
,
K.
Kakushima
,
P.
Ahmet
,
H.
Nohira
,
Y.
Kataoka
,
A.
Nishiyama
,
N.
Sugii
,
K.
Tsutsui
,
K.
Natori
,
T.
Hattori
, and
H.
Iwai
,
Solid-State Electron.
82
,
29
(
2013
).
23.
J. W.
Liu
,
M. Y.
Liao
,
M.
Imura
,
H.
Oosato
,
E.
Watanabe
,
A.
Tanaka
,
H.
Iwai
, and
Y.
Koide
,
J. Appl. Phys.
114
,
084108
(
2013
).
24.
T. L.
Barr
,
J. Phys. Chem.
82
,
1801
(
1978
).
25.
V. V.
Atuchin
,
A. V.
Kalinkin
,
V. A.
Kochubey
, and
V. N.
Kruchinin
,
J. Vac. Sci. Technol. A
29
,
021004
(
2011
).
26.
S.
Jeong
,
Y. G.
Ha
,
J.
Moon
,
A.
Facchetti
, and
T. J.
Marks
,
Adv. Mater.
22
,
1346
(
2010
).
27.
D.
Kueck
,
J.
Scharpf
,
W.
Ebert
,
M.
Fikry
,
F.
Scholz
, and
E.
Kohn
,
Phys. Status Solidi A
207
,
2035
(
2010
).
28.
Z. Y.
Ren
,
J. F.
Zhang
,
J. C.
Zhang
,
C. F.
Zhang
,
D. Z.
Chen
,
P. Z.
Yang
,
Y.
Li
, and
Y.
Hao
,
IEEE Electron Device Lett.
38
,
1302
(
2017
).
29.
J. W.
Liu
,
M. Y.
Liao
,
M.
Imura
, and
Y.
Koide
,
Appl. Phys. Lett.
103
,
092905
(
2013
).
30.
W.
Wang
,
Y. F.
Wang
,
M. H.
Zhang
,
R. Z.
Wang
,
G. Q.
Chen
,
X. H.
Chang
,
F.
Lin
,
F.
Wen
,
K.
Jia
, and
H. X.
Wang
,
IEEE Electron Device Lett.
41
,
585
(
2020
).
31.
Y.
Kitabayashi
,
T.
Kudo
,
H.
Tsuboi
,
T.
Yamada
,
D.
Xu
,
M.
Shibata
,
D.
Matsumura
,
Y.
Hayashi
,
M.
Syamsul
,
M.
Inaba
,
A.
Hiraiwa
, and
H.
Kawarada
,
IEEE Electron Device Lett.
38
,
363
(
2017
).
32.
J. W.
Liu
,
H.
Oosato
,
M. Y.
Liao
, and
Y.
Koide
,
Appl. Phys. Lett.
110
,
203502
(
2017
).
33.
J. W.
Liu
,
M. Y.
Liao
,
M.
Imura
,
H.
Oosato
,
E.
Watanabe
, and
Y.
Koide
,
Appl. Phys. Lett.
102
,
112910
(
2013
).
34.
B. C. M.
Lai
,
N. H.
Kung
, and
J. Y. M.
Lee
,
J. Appl. Phys.
85
,
4087
(
1999
).
35.
T.
Matsumoto
,
H.
Kato
,
K.
Oyama
,
T.
Makino
,
M.
Ogura
,
D.
Takeuchi
,
T.
Inokuma
,
N.
Tokuda
, and
S.
Yamasaki
,
Sci. Rep.
6
,
31585
(
2016
).
36.
J. F.
Zhang
,
W. J.
Chen
,
Z. Y.
Ren
,
K.
Su
,
P. Z.
Yang
,
Z. Z.
Hu
,
J. C.
Zhang
, and
Y.
Hao
,
Phys. Status Solidi A
217
,
1900462
(
2020
).
37.
M. Y.
Liao
,
L. W.
Sang
,
T.
Shimaoka
,
M.
lmura
,
S.
Koizumi
, and
Y.
Koide
,
Adv. Electron. Mater.
5
,
1800832
(
2019
).
38.
M. H.
Zhang
,
W.
Wang
,
S. W.
Fan
,
G. Q.
Chen
,
H. N.
Abbasi
,
F.
Lin
,
F.
Wen
,
J. W.
Zhang
,
R. A.
Bu
, and
H. X.
Wang
,
Carbon
176
,
307
(
2021
).
You do not currently have access to this content.