For a high power density in piezoelectric energy harvesters, both a large direct piezoelectric coefficient (e31,f) and a small relative permittivity constant (εr,33) are required. This study proposed an energy harvesting device made of an epitaxial Pb(Zr, Ti)O3 (PZT) thin film grown on a Si substrate. The epitaxial PZT thin film is deposited on the Si substrate by RF magnetron sputtering. The epitaxial PZT thin film grown on Si substrate has a εr,33 constant of 318. The output voltage as a function of input displacement was measured using a shaker to evaluate the direct e31,f coefficients and energy harvester output characteristics. According to the figure of merit defined as (e31,f)2/ε0εr,33, the epitaxial PZT/Si cantilever is 32 GPa. At a resonant frequency of 373 Hz under an acceleration of 11 m/s2, the epitaxial PZT/Si cantilever has a high output power of 40.93 μW and power density of 108.3 μW/cm2/g2 without any damage, which is very promising for high power energy harvester applications.

1.
E.
Png
,
S.
Srinivasan
,
K.
Bekiroglu
,
J.
Chaoyang
,
R.
Su
, and
K.
Poolla
,
Appl. Energy
239
,
408
(
2019
).
2.
T.
Tan
,
Z.
Yan
,
H.
Zou
,
K.
Ma
,
F.
Liu
,
L.
Zhao
,
Z.
Peng
, and
W.
Zhang
,
Appl. Energy
254
,
113717
(
2019
).
3.
M.
Safaei
,
H. A.
Sodano
, and
S. R.
Anton
,
Smart Mater. Struct.
28
,
113001
(
2019
).
4.
Y.
Song
,
C. H.
Yang
,
S. K.
Hong
,
S. J.
Hwang
,
J. H.
Kim
,
J. Y.
Choi
,
S. K.
Ryu
, and
T. H.
Sung
,
Int. J. Hydrogen Energy
41
,
12563
(
2016
).
5.
X.
Gao
,
J.
Wu
,
Y.
Yu
,
Z.
Chu
,
H.
Shi
, and
S.
Dong
,
Adv. Funct. Mater.
28
,
1706895
(
2018
).
6.
Y.
Tsujiura
,
E.
Suwa
,
T.
Nishi
,
F.
Kurokawa
,
H.
Hida
, and
I.
Kanno
,
Sens. Actuators, A
261
,
295
(
2017
).
7.
H. C.
Song
,
S. W.
Kim
,
H. S.
Kim
,
D. G.
Lee
,
C. Y.
Kang
, and
S.
Nahm
,
Adv. Mater.
32
,
2002208
(
2020
).
8.
H. G.
Yeo
,
X.
Ma
,
C.
Rahn
, and
S.
Trolier‐McKinstry
,
Adv. Funct. Mater.
26
,
5940
(
2016
).
9.
R.
Xu
and
S.
Kim
, in
Proceedings of Power MEMS
(
2012
), p.
464
.
10.
D.
Isarakorn
,
D.
Briand
,
P.
Janphuang
,
A.
Sambri
,
S.
Gariglio
,
J.-M.
Triscone
,
F.
Guy
,
J.
Reiner
,
C.
Ahn
, and
N.
De Rooij
,
Smart Mater. Struct.
20
,
025015
(
2011
).
11.
B. A.
Tuttle
,
J. A.
Voigt
,
D. C.
Goodnow
,
D. L.
Lamppa
,
T. J.
Headley
,
M. O.
Eatough
,
G.
Zender
,
R. D.
Nasby
, and
S. M.
Rodgers
,
J. Am. Ceram. Soc.
76
,
1537
(
1993
).
12.
G. L.
Brennecka
,
W.
Huebner
,
B. A.
Tuttle
, and
P. G.
Clem
,
J. Am. Ceram. Soc.
87
,
1459
(
2004
).
13.
K.
Nashimoto
,
D.
Fork
, and
G.
Anderson
,
Appl. Phys. Lett.
66
,
822
(
1995
).
14.
I.
Kanno
,
H.
Kotera
, and
K.
Wasa
,
Sens. Actuators, A
107
,
68
(
2003
).
15.
G.
Tan
,
K.
Maruyama
,
Y.
Kanamitsu
,
S.
Nishioka
,
T.
Ozaki
,
T.
Umegaki
,
H.
Hida
, and
I.
Kanno
,
Sci. Rep.
9
,
7309
(
2019
).
16.
E.
Suwa
,
Y.
Tsujiura
,
F.
Kurokawa
,
H.
Hida
, and
I.
Kanno
,
Energy Harvest. Syst.
3
,
61
(
2016
).
17.
M.
Dekkers
,
M. D.
Nguyen
,
R.
Steenwelle
,
P. M.
te Riele
,
D. H.
Blank
, and
G.
Rijnders
,
Appl. Phys. Lett.
95
,
012902
(
2009
).
18.
S.
Baek
,
J.
Park
,
D.
Kim
,
V. A.
Aksyuk
,
R.
Das
,
S.
Bu
,
D.
Felker
,
J.
Lettieri
,
V.
Vaithyanathan
, and
S.
Bharadwaja
,
Science
334
,
958
(
2011
).
19.
M.-A.
Dubois
and
P.
Muralt
,
Sens. Actuators, A
77
,
106
(
1999
).
20.
P.
Muralt
,
R. G.
Polcawich
, and
S.
Trolier-McKinstry
,
MRS Bull.
34
,
658
(
2009
).
21.
S. V.
Kalinin
,
B.
Mirman
, and
E.
Karapetian
,
Phys. Rev. B
76
,
212102
(
2007
).
22.
Y.
Tsujiura
,
S.
Kawabe
,
F.
Kurokawa
,
H.
Hida
, and
I.
Kanno
,
Jpn. J. Appl. Phys.
54
,
10NA04
(
2015
).
23.
H.
Miyabuchi
,
T.
Yoshimura
,
N.
Fujimura
, and
S.
Murakami
,
J. Korean Phys. Soc.
59
,
2524
(
2011
).
24.
T.
Yoshimura
,
K.
Kariya
,
N.
Okamoto
,
M.
Aramaki
, and
N.
Fujimura
,
J. Phys.: Conf. Ser.
1052
,
012020
(
2018
).
25.
S.
Yoshida
,
H.
Hanzawa
,
K.
Wasa
, and
S.
Tanaka
,
Sens. Actuators, A
239
,
201
(
2016
).
26.
M. D.
Nguyen
,
E.
Houwman
,
M.
Dekkers
,
D.
Schlom
, and
G.
Rijnders
,
APL Mater.
5
,
074201
(
2017
).
27.
K.
Saito
,
T.
Kurosawa
,
T.
Akai
,
T.
Oikawa
, and
H.
Funakubo
,
J. Appl. Phys.
93
,
545
(
2003
).
28.
Y.
Ehara
,
S.
Yasui
,
T.
Oikawa
,
T.
Shiraishi
,
T.
Shimizu
,
H.
Tanaka
,
N.
Kanenko
,
R.
Maran
,
T.
Yamada
, and
Y.
Imai
,
Sci. Rep.
7
,
9641
(
2017
).
29.
M. A.
Hopcroft
,
W. D.
Nix
, and
T. W.
Kenny
,
J. Microelectromech. Syst.
19
,
229
(
2010
).
30.
S.
Yoshida
,
H.
Hanzawa
,
K.
Wasa
,
M.
Esashi
, and
S.
Tanaka
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
61
,
1552
(
2014
).
31.
N.
Ledermann
,
P.
Muralt
,
J.
Baborowski
,
S.
Gentil
,
K.
Mukati
,
M.
Cantoni
,
A.
Seifert
, and
N.
Setter
,
Sens. Actuators, A
105
,
162
(
2003
).
32.
J.
Ouyang
,
R.
Ramesh
, and
A.
Roytburd
,
Appl. Phys. Lett.
86
,
152901
(
2005
).
33.
S. O.
Isikman
,
O.
Ergeneman
,
A. D.
Yalcinkaya
, and
H.
Urey
,
IEEE J. Select. Top. Quantum Electron.
13
,
283
(
2007
).
34.
K.
Coleman
,
R.
Bermejo
,
D.
Leguillon
, and
S.
Trolier-McKinstry
,
Acta Mater.
191
,
245
(
2020
).
35.
K.
Morimoto
,
I.
Kanno
,
K.
Wasa
, and
H.
Kotera
,
Sens. Actuators, A
163
,
428
(
2010
).
36.
K.
Wasa
,
T.
Matsushima
,
H.
Adachi
,
I.
Kanno
, and
H.
Kotera
,
J. Microelectromech. Syst.
21
,
451
(
2012
).
37.
S.
Trolier-McKinstry
,
F.
Griggio
,
C.
Yaeger
,
P.
Jousse
,
D.
Zhao
,
S. S.
Bharadwaja
,
T. N.
Jackson
,
S.
Jesse
,
S. V.
Kalinin
, and
K.
Wasa
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
,
1782
(
2011
).
38.
C. B.
Yeager
,
Y.
Ehara
,
N.
Oshima
,
H.
Funakubo
, and
S.
Trolier-McKinstry
,
J. Appl. Phys.
116
,
104907
(
2014
).

Supplementary Material

You do not currently have access to this content.