Structured illumination microscopy (SIM), with the advantages of full-field imaging and low photo-damage, is one of the most well-established fluorescence super-resolution microscopy techniques that raised great interest in biological sciences. However, conventional SIM techniques generally require at least nine images for image reconstruction, and the quality of super-resolution significantly depends on high-accuracy illumination parameter estimation, which is usually computationally intense and time-consuming. To address these issues, we propose a robust seven-frame SIM reconstruction algorithm with accelerated correlation-enabled parameter estimation. First, a modulation-assigned spatial filter is employed to remove unreliable backgrounds associated with low signal-to-noise ratios. Then, we propose a coarse-to-fine accelerated correlation algorithm to eliminate the redundant iterations of the traditional correlation-based scheme. The frame reduction is achieved by a specially designed phase-shifting strategy combined with pixel-wise fluorescence pre-calibration. We experimentally demonstrate that, compared with conventional iterative correlation-based methods, the proposed algorithm improves the computational efficiency by a factor of 4.5 while maintaining high accuracy illumination parameter estimation. Meanwhile, our method achieves high-quality super-resolution reconstruction even with a reduction in two raw images, which improves the efficiency of image acquisition and ensures the robustness toward complex experimental environments.

1.
E.
Abbe
, “
Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung
,”
Arch. Mikrosk. Anat.
9
,
413
468
(
1873
).
2.
E.
Betzig
,
G. H.
Patterson
,
R.
Sougrat
,
O. W.
Lindwasser
,
S.
Olenych
,
J. S.
Bonifacino
,
M. W.
Davidson
,
J.
Lippincott-Schwartz
, and
H. F.
Hess
, “
Imaging intracellular fluorescent proteins at nanometer resolution
,”
Science
313
,
1642
1645
(
2006
).
3.
M. J.
Rust
,
M.
Bates
, and
X.
Zhuang
, “
Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)
,”
Nat. Methods
3
,
793
796
(
2006
).
4.
S. W.
Hell
and
J.
Wichmann
, “
Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy
,”
Opt. Lett.
19
,
780
782
(
1994
).
5.
R.
Heintzmann
and
C. G.
Cremer
, “
Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating
,” in
Optical Biopsies and Microscopic Techniques III
(
SPIE
,
1999
), Vol.
3568
, pp.
185
196
.
6.
M. G.
Gustafsson
, “
Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy
,”
J. Microsc.
198
,
82
87
(
2000
).
7.
M. G.
Gustafsson
, “
Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution
,”
Proc. Natl. Acad. Sci.
102
,
13081
13086
(
2005
).
8.
P.
Kner
,
B. B.
Chhun
,
E. R.
Griffis
,
L.
Winoto
, and
M. G.
Gustafsson
, “
Super-resolution video microscopy of live cells by structured illumination
,”
Nat. Methods
6
,
339
342
(
2009
).
9.
L.
Shao
,
P.
Kner
,
E. H.
Rego
, and
M. G.
Gustafsson
, “
Super-resolution 3D microscopy of live whole cells using structured illumination
,”
Nat. Methods
8
,
1044
1046
(
2011
).
10.
L.
Schermelleh
,
R.
Heintzmann
, and
H.
Leonhardt
, “
A guide to super-resolution fluorescence microscopy
,”
J. Cell Biol.
190
,
165
175
(
2010
).
11.
J.
Demmerle
,
C.
Innocent
,
A. J.
North
,
G.
Ball
,
M.
Müller
,
E.
Miron
,
A.
Matsuda
,
I. M.
Dobbie
,
Y.
Markaki
, and
L.
Schermelleh
, “
Strategic and practical guidelines for successful structured illumination microscopy
,”
Nat. Protoc.
12
,
988
1010
(
2017
).
12.
F.
Orieux
,
E.
Sepulveda
,
V.
Loriette
,
B.
Dubertret
, and
J.-C.
Olivo-Marin
, “
Bayesian estimation for optimized structured illumination microscopy
,”
IEEE Trans. Image Process.
21
,
601
614
(
2012
).
13.
F.
Ströhl
and
C. F.
Kaminski
, “
Speed limits of structured illumination microscopy
,”
Opt. Lett.
42
,
2511
2514
(
2017
).
14.
S.
Dong
,
J.
Liao
,
K.
Guo
,
L.
Bian
,
J.
Suo
, and
G.
Zheng
, “
Resolution doubling with a reduced number of image acquisitions
,”
Biomed. Opt. Express
6
,
2946
2952
(
2015
).
15.
A.
Lal
,
C.
Shan
,
K.
Zhao
,
W.
Liu
,
X.
Huang
,
W.
Zong
,
L.
Chen
, and
P.
Xi
, “
A frequency domain SIM reconstruction algorithm using reduced number of images
,”
IEEE Trans. Image Process.
27
,
4555
4570
(
2018
).
16.
L.
Jin
,
B.
Liu
,
F.
Zhao
,
S.
Hahn
,
B.
Dong
,
R.
Song
,
T. C.
Elston
,
Y.
Xu
, and
K. M.
Hahn
, “
Deep learning enables structured illumination microscopy with low light levels and enhanced speed
,”
Nat. Commun.
11
,
1934
(
2020
).
17.
C.
Ling
,
C.
Zhang
,
M.
Wang
,
F.
Meng
,
L.
Du
, and
X.
Yuan
, “
Fast structured illumination microscopy via deep learning
,”
Photonics Res.
8
,
1350
1359
(
2020
).
18.
C.
Zuo
,
J.
Qian
,
S.
Feng
,
W.
Yin
,
Y.
Li
,
P.
Fan
,
J.
Han
,
K.
Qian
, and
Q.
Chen
, “
Deep learning in optical metrology: A review
,”
Light
11
,
39
(
2022
).
19.
X.
Huang
,
J.
Fan
,
L.
Li
,
H.
Liu
,
R.
Wu
,
Y.
Wu
,
L.
Wei
,
H.
Mao
,
A.
Lal
,
P.
Xi
 et al, “
Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy
,”
Nat. Biotechnol.
36
,
451
459
(
2018
).
20.
G.
Wen
,
S.
Li
,
L.
Wang
,
X.
Chen
,
Z.
Sun
,
Y.
Liang
,
X.
Jin
,
Y.
Xing
,
Y.
Jiu
,
Y.
Tang
 et al, “
High-fidelity structured illumination microscopy by point-spread-function engineering
,”
Light
10
,
70
(
2021
).
21.
S. A.
Shroff
,
J. R.
Fienup
, and
D. R.
Williams
, “
Phase-shift estimation in sinusoidally illuminated images for lateral superresolution
,”
J. Opt. Soc. Am. A
26
,
413
424
(
2009
).
22.
K.
Wicker
, “
Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in Fourier space
,”
Opt. Express
21
,
24692
24701
(
2013
).
23.
X.
Zhou
,
M.
Lei
,
D.
Dan
,
B.
Yao
,
Y.
Yang
,
J.
Qian
,
G.
Chen
, and
P. R.
Bianco
, “
Image recombination transform algorithm for superresolution structured illumination microscopy
,”
J. Biomed. Opt.
21
,
096009
(
2016
).
24.
M. G.
Gustafsson
,
L.
Shao
,
P. M.
Carlton
,
C. R.
Wang
,
I. N.
Golubovskaya
,
W. Z.
Cande
,
D. A.
Agard
, and
J. W.
Sedat
, “
Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination
,”
Biophys. J.
94
,
4957
4970
(
2008
).
25.
K.
Wicker
,
O.
Mandula
,
G.
Best
,
R.
Fiolka
, and
R.
Heintzmann
, “
Phase
ptimization for structured illumination microscopy
,”
Opt. Express
21
,
2032
2049
(
2013
).

Supplementary Material

You do not currently have access to this content.