Optics and, more recently, coherent matter waves enabled inertial sensors, such as accelerometers and gyroscopes, to reach high levels of resolution and sensitivity. As these technologies rest on physical phenomena that require particular setups and working conditions, e.g., kilometers of optical fibers or ultralow temperatures, their application range is limited because of lack of portability. Here, we propose a path forward considering a superconducting quantum interference device (SQUID) to detect and measure acceleration by using electronic interferometry. The basic idea is not to use a SQUID as a magnetometer in acceleration measurement setups, but as an accelerometer. The operation of such an accelerometer rests on the ability of the Cooper pairs to record their wave function phase change, as the device is subjected either to a transverse acceleration or vibrations. We provide numerical evidence for the feasibility of SQUID-based accelerometers that can be used for transverse acceleration and oscillatory motion measurement.

1.
H.
Igel
,
A.
Cochard
,
J.
Wassermann
,
A.
Flaws
,
U.
Schreiber
,
A.
Velikoseltsev
, and
N.
Pham Dinh
,
Geophys. J. Int.
168
,
182
(
2007
).
2.
R.
Geiger
,
V.
Ménoret
,
G.
Stern
 et al.,
Nat. Commun.
2
,
474
(
2011
).
3.
T.
Lévèque
,
C.
Fallet
,
M.
Mandea
 et al.,
J. Geod.
95
,
15
(
2021
).
4.
C. M.
Will
,
Living Rev. Relativ.
9
,
3
(
2006
).
5.
X.
Wu
,
Z.
Pagel
,
B.
Malek
,
T.
Nguyen
,
F.
Zi
,
D.
Scheirer
, and
H.
Müller
,
Sci. Adv.
5
,
eaax0800
(
2019
).
6.
Y.
Margalit
,
O.
Dobkowski
,
Z.
Zhou
 et al.,
Sci. Adv.
7
,
eabg2879
(
2021
).
7.
B.
Barrett
,
A.
Bertoldi
, and
P.
Bouyer
,
Phys. Scr.
91
,
053006
(
2016
).
8.
O.
Carnal
and
J.
Mlynek
,
Phys. Rev. Lett.
66
,
2689
(
1991
).
9.
D. W.
Keith
,
C. R.
Ekstrom
,
Q. A.
Turchette
, and
D. E.
Pritchard
,
Phys. Rev. Lett.
66
,
2693
(
1991
).
10.
M.
Kasevich
and
S.
Chu
,
Appl. Phys. B
54
,
321
(
1992
).
11.
J. F.
Schaff
,
T.
Langen
, and
J.
Schmiedmayer
,
Riv. Nuovo Cimento
37
,
509
(
2014
).
12.
B.
Barrett
,
R.
Geiger
,
I.
Dutta
,
M.
Meunier
,
B.
Canuel
,
A.
Gauguet
,
P.
Bouyer
, and
A.
Landragin
,
C. R. Phys.
15
,
875
(
2014
).
13.
G.
Sagnac
,
C. R. Acad. Sci.
157
,
708
(
1913
).
14.
G.
Sagnac
,
J. Phys. Theor. Appl.
4
,
177
(
1914
).
15.
E. J.
Post
,
Rev. Mod. Phys.
39
,
475
(
1967
).
16.
B.
Chesca
,
D.
Koelle
, and
R.
Kleiner
, “
SQUID theory
,” in
The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems
, edited by
J.
Clarke
and
A.
Braginski
(
John Wiles & Sons, Inc
.,
2004
).
17.
The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems
, edited by
J.
Clarke
and
A. I.
Braginski
(
Wiley VCH
,
2006
).
18.
F. H.
London
,
Superfluids
(
Wiley
,
New York
,
1950
), Vol.
1
.
19.
J.
Tate
,
S. B.
Felch
, and
B.
Cabrera
,
Phys. Rev. B
42
,
7885
(
1990
).
20.
D.
Fargion
,
L.
Chiatti
, and
A.
Aiello
,
Physica C
336
,
27
(
2000
).
21.
U. R.
Fischer
,
C.
Häussler
,
J.
Oppenländer
, and
N.
Schopohl
,
Phys. Rev. B
64
,
214509
(
2001
).
22.
H. A.
Chan
,
M. V.
Moody
, and
H. J.
Paik
,
Phys. Rev. D
35
,
3572
(
1987
).
23.
Gyros, Clocks, Interferometers…: Testing Relativistic Gravity in Space
, Lecture Notes in Physics Vol.
562
, edited by
C.
Lämmerzahl
,
C. W. F.
Everitt
, and
F. W.
Hehl
(Springer-Verlag,
Berlin
,
Heidelberg
,
2001
).
24.
H.
Dittus
and
C.
Mehls
,
Class. Quantum Gravity
18
,
2417
(
2001
).
25.
A. V.
Rzhevskiy
,
O. V.
Snigirev
,
Y. V.
Maslennikov
, and
V. Y.
Slobodchikov
,
Moscow Univ. Phys. Bull.
75
,
336
(
2020
).
26.
C. P.
Foley
,
M. N.
Keene
,
H. J. M.
ter Brake
, and
J.
Vrba
, in
The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems
, edited by
J.
Clarke
and
A.
Braginski
(
John Wiles & Sons, Inc
.,
2004
).
27.
P.
Storey
and
C.
Cohen-Tannoudji
,
J. Phys. II
4
,
1999
(
1994
).
28.
P.
Navez
,
S.
Pandey
,
H.
Mas
,
K.
Poulios
,
T.
Fernholz
, and
W.
von Klitzing
,
New J. Phys.
18
,
075014
(
2016
).
29.
G.
Morris
,
N.
Dunbar
, and
P.
Bianco
, in
49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
, San Jose, California (
IEEE
,
2013
), p.
3854
.
30.
I.
Levchenko
,
K.
Bazaka
,
Y.
Ding
 et al.,
Appl. Phys. Rev.
5
,
011104
(
2018
).
31.
J. F.
Annett
,
Superconductivity, Superfluids and Condensates
(
Oxford University Press
,
Oxford
,
2001
).
32.
L.
Pitaevskii
and
S.
Stringari
,
Bose-Einstein Condensation and Superfluidity
(
Oxford University Press
,
2016
), Vol.
164
.
33.
P. G.
de Gennes
,
Superconductivity of Metals and Alloys
(
Benjamin
,
New York
,
1966
).
34.
L. D.
Landau
and
E. M.
Lifshitz
,
Quantum Mechanics: Non-Relativistic Theory
(
Elsevier
,
2013
), Vol.
3
.

Supplementary Material

You do not currently have access to this content.