In this Letter, we report a demonstration of p-channel tin monoxide (SnO) thin-film transistors (TFTs) with high field-effect mobility (μFE) exceeding 10 cm2/Vs and hysteresis-free like behavior. We demonstrate that maintaining metallic states before encapsulation is a key process to enhance μFE in p-type SnO thin-films. Sustaining this meta-stability involves the following two processes during fabrication: (1) postdeposition annealing (PDA) in two steps and (2) encapsulation in the middle of each PDA. This simple process not only suppresses creation of oxidized states such as adverse Sn4+ but also facilitates the lateral growth of crystals with improved crystallinity by interfacial energy stabilization. The resultant SnO TFT reveals a record-high μFE up to 15.8 cm2/Vs with a negligible hysteresis of 0.1 V. This study suggests a practical route to grant high μFE to p-channel SnO TFTs without any dopant or complex postdeposition treatment.

1.
K.
Nomura
,
H.
Ohta
,
A.
Takgi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Nature
432
,
488
(
2004
).
2.
T.
Kim
,
C. H.
Choi
,
J. S.
Hur
,
D.
Ha
,
B. J.
Kuh
,
Y.
Kim
,
M. H.
Cho
,
S.
Kim
, and
J. K.
Jeong
, “
Progress, Challenges, and Opportunities in Oxide Semiconductor Devices: A Key Building Block for Applications Ranging from Display Backplanes to 3D Integrated Semiconductor Chips
,”
Adv. Mater.
2204663
(published online
2022
).
3.
A.
Charnas
,
M.
Si
,
Z.
Lin
, and
P. D.
Ye
,
Appl. Phys. Lett.
118
(
5
),
052107
(
2021
).
4.
C. H.
Choi
,
T.
Kim
,
S.
Ueda
,
Y.-S.
Shiah
,
H.
Hosono
,
J.
Kim
, and
J. K.
Jeong
,
ACS Appl. Mater. Interfaces
13
(
24
),
28451
(
2021
).
5.
M.
Si
,
Y.
Hu
,
Z.
Lin
,
X.
Sun
,
A.
Charnas
,
D.
Zheng
,
X.
Lyu
,
H.
Wang
,
K.
Cho
, and
P. D.
Ye
,
Nano Lett.
21
(
1
),
500
(
2021
).
6.
M.
Si
,
J.
Andler
,
X.
Lyu
,
C.
Niu
,
S.
Datta
,
R.
Agrawal
, and
P. D.
Ye
,
ACS Nano
14
(
9
),
11542
(
2020
).
7.
A.
Charnas
,
Z.
Lin
,
Z.
Zhang
, and
P. D.
Ye
,
Appl. Phys. Lett.
119
(
25
),
263503
(
2021
).
8.
H. J.
Park
,
T.
Kim
,
M. J.
Kim
,
H.
Lee
,
J. H.
Lim
, and
J. K.
Jeong
,
Ceram. Int.
48
(
9
),
12806
(
2022
).
9.
M.
Si
,
Z.
Lin
,
Z.
Chen
,
X.
Sun
,
H.
Wang
, and
P. D.
Ye
,
Nat. Electron.
5
(
3
),
164
(
2022
).
10.
Y.-S.
Shiah
,
K.
Sim
,
Y.
Shi
,
K.
Abe
,
S.
Ueda
,
M.
Sasase
,
J.
Kim
, and
H.
Hosono
,
Nat. Electron.
4
(
11
),
800
(
2021
).
11.
T.
Kim
and
J. K.
Jeong
,
Phys. Status Solidi-Rapid Res. Lett.
16
(
1
),
2100394
(
2022
).
12.
J. A.
Caraveo-Frescas
,
P. K.
Nayak
,
H. A.
Al-Jawhari
,
D. B.
Granato
,
U.
Schwingenschlogl
, and
H. N.
Alshareef
,
ACS Nano
7
(
6
),
5160
(
2013
).
13.
T.
Kim
,
M. J.
Kim
,
H.
Lee
,
H.
Xu
,
C. H.
Choi
,
J.-K.
Kim
, and
J. K.
Jeong
,
IEEE Trans. Electron Devices
68
(
9
),
4467
(
2021
).
14.
T.
Kim
,
J.-K.
Kim
,
B.
Yoo
,
H.
Xu
,
S.
Yim
,
S.-H.
Kim
,
H.-Y.
Yu
, and
J. K.
Jeong
,
J. Mater. Chem. C
8
(
1
),
201
(
2020
).
15.
S.
Yim
,
T.
Kim
,
B.
Yoo
,
H.
Xu
,
Y.
Youn
,
S.
Han
, and
J. K.
Jeong
,
ACS Appl. Mater. Interfaces
11
(
50
),
47025
(
2019
).
16.
T.
Kim
,
B.
Yoo
,
Y.
Youn
,
M.
Lee
,
A.
Song
,
K.-B.
Chung
,
S.
Han
, and
J. K.
Jeong
,
ACS Appl. Mater. Interfaces
11
(
43
),
40214
(
2019
).
17.
W. D.
Kingery
,
H. K.
Bowen
, and
D. R.
Uhlmann
,
Introduction to Ceramics
, 2nd ed. (
Wiley
,
1975
).
18.
T.
Kim
,
C. H.
Choi
,
P.
Byeon
,
M.
Lee
,
A.
Song
,
K.-B.
Chung
,
S.
Han
,
S.-Y.
Chung
,
K.-S.
Park
, and
J. K.
Jeong
,
npj 2D Mater. Appl.
6
(
1
),
4
(
2022
).
19.
I.
Ferain
,
C. A.
Clinge
, and
J.-P.
Colinge
,
Nature
479
,
310
(
2011
).

Supplementary Material

You do not currently have access to this content.