We demonstrate a continuous-wave single-frequency diamond Raman laser operating at 1178 nm by using a linear resonator that is stabilized using an intracavity χ(2) element. Optimization of the single-frequency power was realized by tuning the phase matching in the χ(2) element away from the second-harmonic peak to suppress neighboring modes via sum frequency generation but avoid large losses to the intracavity primary Stokes mode. A maximum single-longitudinal-mode power of 20 W at 1178 nm with an instrument-limited linewidth of 67 MHz was obtained using a 12 GHz multi-longitudinal-mode Yb-doped fiber pump laser at 1018 nm with power of 82 W. This work provides an interesting route for producing single-frequency high-power lasers near 1.2 μm utilizing diamond Raman conversion combined with broadband, high-power, low-cost YDF lasers.

1.
D.
Rogatkin
,
V.
Shumskiy
,
S.
Tereshenko
, and
P.
Polyakov
, “
Laser-based non-invasive spectrophotometry: An overview of possible medical applications
,”
Photonics Lasers Med.
2
,
225
240
(
2013
).
2.
P.
Agostinis
,
K.
Berg
,
K. A.
Cengel
,
T. H.
Foster
,
A. W.
Girotti
,
S. O.
Gollnick
,
S. M.
Hahn
,
M. R.
Hamblin
,
A.
Juzeniene
,
D.
Kessel
,
M.
Korbelik
,
J.
Moan
,
P.
Mroz
,
D.
Nowis
,
J.
Piette
,
B. C.
Wilson
, and
J.
Golab
, “
Photodynamic therapy of cancer: An update
,”
CA: Cancer J. Clin.
61
,
250
281
(
2011
).
3.
D.
Pliutau
and
N. S.
Prasad
, “
Simulation studies for comparative evaluation of alternative spectral regions for the sensing of CO2 and O2 suitable for the ASCENDs Mission
,”
Proc. SPIE
8513
,
851309
(
2012
).
4.
N. K.
Thipparapu
,
A. A.
Umnikov
,
P.
Barua
, and
J.
Sahu
, “
Bi-doped fiber amplifier with a flat gain of 25 dB operating in the wavelength band 1320–1360 nm
,”
Opt. Lett.
41
,
1518
1521
(
2016
).
5.
L.
Zhang
,
H.
Jiang
,
S.
Cui
,
J.
Hu
, and
Y.
Feng
, “
Versatile Raman fiber laser for sodium laser guide star
,”
Laser Photonics Rev.
8
,
889
895
(
2014
).
6.
M.
Enderlein
and
W. G.
Kaenders
, “
Sodium guide star (R)evolution: A novel sodium guide star laser enables next-generation adaptive optics for ground-based astronomy
,”
Opt. Photonik
11
,
31
35
(
2016
).
7.
X.
Yang
,
L.
Zhang
,
S.
Cui
,
T.
Fan
,
J.
Dong
, and
Y.
Feng
, “
Sodium guide star laser pulsed at Larmor frequency
,”
Opt. Lett.
42
,
4351
4354
(
2017
).
8.
X.-K.
Dou
,
X.-H.
Xue
,
T.-D.
Chen
,
W.-X.
Wan
,
X.-W.
Cheng
,
T.
Li
,
C.
Chen
,
S.
Qiu
, and
Z.-Y.
Chen
, “
A statistical study of sporadic sodium layer observed by sodium lidar at Hefei (31.8° N, 117.30° E)
,”
Ann. Geophys.
27
,
2247
2257
(
2009
).
9.
A. B.
Rulkov
,
A. A.
Ferin
,
S. V.
Popov
,
J. R.
Taylor
,
I.
Razdobreev
,
L.
Bigot
, and
G.
Bouwmans
, “
Narrow-line, 1178 nm CW bismuth-doped fiber laser with 6.4 W output for direct frequency doubling
,”
Opt. Express
15
,
5473
5476
(
2007
).
10.
X.
Zhu
,
J.
Zong
,
K.
Wiersma
,
R. A.
Norwood
,
N. S.
Prasad
,
M. D.
Obland
,
A.
Chavez-Pirson
, and
N.
Peyghambarian
, “
Watt-level short-length holmium-doped ZBLAN fiber lasers at 1.2 μm
,”
Opt. Lett.
39
,
1533
1536
(
2014
).
11.
Y.
Chen
,
T.
Yao
,
L.
Huang
,
H.
Xiao
,
J.
Leng
, and
P.
Zhou
, “
2 kW high-efficiency Raman fiber amplifier based on passive fiber with dynamic analysis on beam cleanup and fluctuation
,”
Opt. Express
28
,
3495
3504
(
2020
).
12.
D.
Wei
,
V.
Karpov
,
N.
Guo
, and
W. R. L.
Clements
, “
A 100-W 1178-nm continuous-wave single-frequency linearly polarized Raman fiber amplifier
,”
Proc. SPIE
10703
,
107030S
(
2018
).
13.
Q.
Sheng
,
A.
Lee
,
D.
Spence
, and
H.
Pask
, “
Wavelength tuning and power enhancement of an intracavity Nd: GdVO4-BaWO4 Raman laser using an etalon
,”
Opt. Express
26
,
32145
32155
(
2018
).
14.
Y. F.
Chen
, “
Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser
,”
Opt. Lett.
29
,
1251
1253
(
2004
).
15.
S.
Men
,
Z.
Liu
,
Z.
Cong
,
Y.
Liu
,
J.
Xia
,
S.
Zhang
,
W.
Cheng
,
Y.
Li
,
C.
Tu
, and
X.
Zhang
, “
Single-frequency CaWO4 Raman amplifier at 1178 nm
,”
Opt. Lett.
40
,
530
533
(
2015
).
16.
L.
Zhang
,
Y.
Duan
,
X.
Mao
,
Z.
Li
,
Y.
Chen
,
Y.
Zhang
, and
H.
Zhu
, “
Passively Q-switched YVO4 Raman operation with 816 and 890 cm−1 shifts by respective Raman configurations
,”
Opt. Mater. Express
11
,
1815
1823
(
2021
).
17.
X.
Yang
,
Z.
Bai
,
H.
Jiang
,
R. P.
Mildren
, and
Y.
Feng
, “
A narrow-linewidth linearly-polarized 1018 nm fiber source for pumping diamond Raman laser
,”
Front. Phys.
9
,
727109
(
2021
).
18.
M.
Heinzig
,
G.
Palma-Vega
,
T.
Walbaum
,
T.
Schreiber
,
R.
Eberhardt
, and
A.
Tünnermann
, “
Diamond Raman oscillator operating at 1178 nm
,”
Opt. Lett.
45
,
2898
2901
(
2020
).
19.
X.
Yang
,
O.
Kitzler
,
D. J.
Spence
,
Z.
Bai
,
Y.
Feng
, and
R. P.
Mildren
, “
Diamond sodium guide star laser
,”
Opt. Lett.
45
,
1898
1901
(
2020
).
20.
H.
Zhang
,
P.
Li
, and
X.
Chen
, “
Scheme for achieving a continuous-wave laser operation at 1178 nm
,”
Appl. Opt.
56
,
6973
6976
(
2017
).
21.
Z.
Bai
,
Z.
Zhang
,
K.
Wang
,
J.
Gao
,
Z.
Zhang
,
X.
Yang
,
Y.
Wang
,
Z.
Lu
, and
R. P.
Mildren
, “
Comprehensive thermal analysis of diamond in a high-power Raman cavity based on FVM-FEM coupled method
,”
Nanomaterials
11
,
1572
(
2021
).
22.
R. J.
Williams
,
J.
Nold
,
M.
Strecker
,
O.
Kitzler
,
A.
McKay
,
T.
Schreiber
, and
R. P.
Mildren
, “
Efficient Raman frequency conversion of high-power fiber lasers in diamond
,”
Laser Photonics Rev.
9
,
405
411
(
2015
).
23.
S.
Antipov
,
R. J.
Williams
,
A.
Sabella
,
O.
Kitzler
,
A.
Berhane
,
D. J.
Spence
, and
R. P.
Mildren
, “
Analysis of a thermal lens in a diamond Raman laser operating at 1.1 kW output power
,”
Opt. Express
28
,
15232
15239
(
2020
).
24.
O.
Lux
,
S.
Sarang
,
O.
Kitzler
,
D. J.
Spence
, and
R. P.
Mildren
, “
Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain
,”
Optica
3
,
876
881
(
2016
).
25.
K. I.
Martin
,
W. A.
Clarkson
, and
D. C.
Hanna
, “
Self-suppression of axial mode hopping by intracavity second-harmonic generation
,”
Opt. Lett.
22
,
375
377
(
1997
).
26.
Y.
Guo
,
M.
Xu
,
W.
Peng
,
J.
Su
,
H.
Lu
, and
K.
Peng
, “
Realization of a 101 W single-frequency continuous wave all-solid-state 1064 nm laser by means of mode self-reproduction
,”
Opt. Lett.
43
,
6017
6020
(
2018
).
27.
X.
Yang
,
O.
Kitzler
,
D. J.
Spence
,
R. J.
Williams
,
Z.
Bai
,
S.
Sarang
,
L.
Zhang
,
Y.
Feng
, and
R. P.
Mildren
, “
Single-frequency 620 nm diamond laser at high power, stabilized via harmonic self-suppression and spatial-hole-burning-free gain
,”
Opt. Lett.
44
,
839
842
(
2019
).
28.
X.
Yang
,
Z.
Bai
,
D.
Chen
,
W.
Chen
,
Y.
Feng
, and
R. P.
Mildren
, “
Widely-tunable single-frequency diamond Raman laser
,”
Opt. Express
29
,
29449
29457
(
2021
).
29.
A.
Sabella
,
J. A.
Piper
, and
R. P.
Mildren
, “
1240 nm diamond Raman laser operating near the quantum limit
,”
Opt. Lett.
35
,
3874
3876
(
2010
).
30.
A. V.
Smith
,
Crystal Nonlinear Optics: With SNLO Examples
(
AS-Photonics
,
2018
).
31.
H.
Jasbeer
,
R. J.
Williams
,
O.
Kitzler
,
A.
McKay
, and
R. P.
Mildren
, “
Wavelength diversification of high-power external cavity diamond Raman lasers using intracavity harmonic generation
,”
Opt. Express
26
,
1930
1941
(
2018
).
32.
R. W.
Boyd
,
Nonlinear Optics
(
Elsevier
,
2008
).
33.
K.
Kato
, “
Temperature-tuned 90° phase-matching properties of LiB3O5
,”
IEEE J. Quantum Electron.
30
,
2950
2952
(
1994
).
34.
S.
Cui
,
X.
Zeng
,
H.
Jiang
,
X.
Cheng
,
X.
Yang
,
J.
Zhou
, and
Y.
Feng
, “
Robust single-frequency 589 nm fiber laser based on phase modulation and passive demodulation
,”
Opt. Express
30
,
9112
9118
(
2022
).
35.
H.
Chen
,
Z.
Bai
,
X.
Yang
,
J.
Ding
,
Y.
Qi
,
B.
Yan
,
Y.
Wang
,
Z.
Lu
, and
R. P.
Mildren
, “
Enhanced stimulated Brillouin scattering utilizing Raman conversion in diamond
,”
Appl. Phys. Lett.
120
,
181103
(
2022
).
36.
R. J.
Williams
,
Z.
Bai
,
S.
Sarang
,
O.
Kitzler
,
D. J.
Spence
, and
R. P.
Mildren
, “
Diamond Brillouin lasers
,” arXiv:1807.00240 (
2018
).
37.
Y.
Mao
,
S.
Chang
,
E.
Murdock
, and
C.
Flueraru
, “
Simultaneous dual-wavelength-band common-path swept-source optical coherence tomography with single polygon mirror scanner
,”
Opt. Lett.
36
,
1990
1992
(
2011
).
38.
V.
Ménoret
,
R.
Geiger
,
G.
Stern
,
N.
Zahzam
,
B.
Battelier
,
A.
Bresson
,
A.
Landragin
, and
P.
Bouyer
, “
Dual-wavelength laser source for onboard atom interferometry
,”
Opt. Lett.
36
,
4128
4130
(
2011
).
39.
B.
Chance
,
M. B.
Maris
,
J.
Sorge
, and
M. Z.
Zhang
, “
Phase modulation system for dual wavelength difference spectroscopy of hemoglobin deoxygenation in tissues
,”
Proc. SPIE
1204
,
481
491
(
1990
).
You do not currently have access to this content.