We construct a rainbow metamaterial for multimode sound blocking over a broad range of sub-kHz frequencies in the form of a tapered rectangular cross section beam of machined cells based on elements that can, on average, simultaneously attenuate the majority of the possible elastic-wave polarizations. Using aluminum, we construct a five-cell structure containing sub-wavelength planar resonators with interconnected ribs, which couple to compressional, in-plane shear, flexural, and torsional vibrations. Backed up by numerical simulations, we verify that this tapered structure can, on average, strongly attenuate acoustic modes over the frequency range of the combined metamaterial bandgaps, that is over a frequency range representing ∼50% around ∼0.7 kHz. Applications include vibration isolation.

1.
V. M.
García-Chocano
,
J.
Christensen
, and
J.
Sánchez-Dehesa
, “
Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics
,”
Phys. Rev. Lett.
112
,
144301
(
2014
).
2.
R.
Zhu
,
X.
Liu
,
G.
Hu
,
C.
Sun
, and
G.
Huang
, “
Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial
,”
Nat. Commun.
5
,
5510
(
2014
).
3.
J.
Pendry
and
J.
Li
, “
An acoustic metafluid: Realizing a broadband acoustic cloak
,”
New J. Phys.
10
,
115032
(
2008
).
4.
A. N.
Norris
, “
Acoustic metafluids
,”
J. Acoust. Soc. Am.
125
,
839
849
(
2009
).
5.
N.
Stenger
,
M.
Wilhelm
, and
M.
Wegener
, “
Experiments on elastic cloaking in thin plates
,”
Phys. Rev. Lett.
108
,
014301
(
2012
).
6.
T.
Bückmann
,
M.
Thiel
,
M.
Kadic
,
R.
Schittny
, and
M.
Wegener
, “
An elasto-mechanical unfeelability cloak made of pentamode metamaterials
,”
Nat. Commun.
5
,
4130
(
2014
).
7.
S.
Zhang
,
L.
Yin
, and
N.
Fang
, “
Focusing ultrasound with an acoustic metamaterial network
,”
Phys. Rev. Lett.
102
,
194301
(
2009
).
8.
L.
Zigoneanu
,
B.-I.
Popa
, and
S. A.
Cummer
, “
Design and measurements of a broadband two-dimensional acoustic lens
,”
Phys. Rev. B
84
,
024305
(
2011
).
9.
F.
Lemoult
,
N.
Kaina
,
M.
Fink
, and
G.
Lerosey
, “
Soda cans metamaterial: A subwavelength-scaled phononic crystal
,”
Crystals
6
,
82
(
2016
).
10.
N.
Fang
,
D.
Xi
,
J.
Xu
,
M.
Ambati
,
W.
Srituravanich
,
C.
Sun
, and
X.
Zhang
, “
Ultrasonic metamaterials with negative modulus
,”
Nat. Mater.
5
,
452
(
2006
).
11.
D.
Yu
,
Y.
Liu
,
G.
Wang
,
H.
Zhao
, and
J.
Qiu
, “
Flexural vibration band gaps in Timoshenko beams with locally resonant structures
,”
J. Appl. Phys.
100
,
124901
(
2006
).
12.
S.
Yao
,
X.
Zhou
, and
G.
Hu
, “
Experimental study on negative effective mass in a 1D mass–spring system
,”
New J. Phys.
10
,
043020
(
2008
).
13.
Y.
Xiao
,
J.
Wen
,
D.
Yu
, and
X.
Wen
, “
Flexural wave propagation in beams with periodically attached vibration absorbers: Band-gap behavior and band formation mechanisms
,”
J. Sound Vib.
332
,
867
893
(
2013
).
14.
S.
Zhang
,
J. H.
Wu
, and
Z.
Hu
, “
Low-frequency locally resonant band-gaps in phononic crystal plates with periodic spiral resonators
,”
J. Appl. Phys.
113
,
163511
(
2013
).
15.
R.
Zhu
,
X.
Liu
,
G.
Hu
,
C.
Sun
, and
G.
Huang
, “
A chiral elastic metamaterial beam for broadband vibration suppression
,”
J. Sound Vib.
333
,
2759
2773
(
2014
).
16.
M.
Nouh
,
O.
Aldraihem
, and
A.
Baz
, “
Vibration characteristics of metamaterial beams with periodic local resonances
,”
J. Vib. Acoust.
136
,
061012
(
2014
).
17.
H.
Zhang
,
Y.
Xiao
,
J.
Wen
,
D.
Yu
, and
X.
Wen
, “
Flexural wave band gaps in metamaterial beams with membrane-type resonators: Theory and experiment
,”
J. Phys. D
48
,
435305
(
2015
).
18.
G.
Ma
,
C.
Fu
,
G.
Wang
,
P.
Del Hougne
,
J.
Christensen
,
Y.
Lai
, and
P.
Sheng
, “
Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials
,”
Nat. Commun.
7
,
13536
(
2016
).
19.
T.
Wang
,
M.-P.
Sheng
, and
Q.-H.
Qin
, “
Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators
,”
Phys. Lett. A
380
,
525
529
(
2016
).
20.
L.
Li
and
A.
Cai
, “
Low-frequency band gap mechanism of torsional vibration of lightweight elastic metamaterial shafts
,”
Eur. Phys. J. Appl. Phys.
75
,
10501
(
2016
).
21.
E.
Nobrega
,
F.
Gautier
,
A.
Pelat
, and
J. D.
Santos
, “
Vibration band gaps for elastic metamaterial rods using wave finite element method
,”
Mech. Syst. Signal Process.
79
,
192
202
(
2016
).
22.
L.
Tang
and
L.
Cheng
, “
Ultrawide band gaps in beams with double-leaf acoustic black hole indentations
,”
J. Acoust. Soc. Am.
142
,
2802
2807
(
2017
).
23.
H.
Chen
,
X.
Li
,
Y.
Chen
, and
G.
Huang
, “
Wave propagation and absorption of sandwich beams containing interior dissipative multi-resonators
,”
Ultrasonics
76
,
99
108
(
2017
).
24.
J.-S.
Chen
,
Y.-J.
Huang
, and
I.-T.
Chien
, “
Flexural wave propagation in metamaterial beams containing membrane-mass structures
,”
Int. J. Mech. Sci.
131–132
,
500
506
(
2017
).
25.
L.
Li
,
R.
Lv
,
A.
Cai
,
M.
Xie
,
Y.
Chen
, and
G.
Huang
, “
Low-frequency vibration suppression of a multi-layered elastic metamaterial shaft with discretized scatters
,”
J. Phys. D
52
,
055105
(
2019
).
26.
K.
Wang
,
J.
Zhou
,
D.
Xu
, and
H.
Ouyang
, “
Tunable low-frequency torsional-wave band gaps in a meta-shaft
,”
J. Phys. D
52
,
055104
(
2019
).
27.
K.
Wang
,
J.
Zhou
,
Q.
Wang
,
H.
Ouyang
, and
D.
Xu
, “
Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: Design and experimental validation
,”
Appl. Phys. Lett.
114
,
251902
(
2019
).
28.
K.
Fujita
,
M.
Tomoda
,
O. B.
Wright
, and
O.
Matsuda
, “
Perfect acoustic bandgap metabeam based on a quadruple-mode resonator array
,”
Appl. Phys. Lett.
115
,
081905
(
2019
).
29.
A.
Ogasawara
,
K.
Fujita
,
M.
Tomoda
,
O.
Matsuda
, and
O. B.
Wright
, “
Wave-canceling acoustic metarod architected with single material building blocks
,”
Appl. Phys. Lett.
116
,
241904
(
2020
).
30.
F.-C.
Hsu
,
C.-I.
Lee
,
J.-C.
Hsu
,
T.-C.
Huang
,
C.-H.
Wang
, and
P.
Chang
, “
Acoustic band gaps in phononic crystal strip waveguides
,”
Appl. Phys. Lett.
96
,
051902
(
2010
).
31.
Y.
Pennec
,
B. D.
Rouhani
,
C.
Li
,
J.
Escalante
,
A.
Martínez
,
S.
Benchabane
,
V.
Laude
, and
N.
Papanikolaou
, “
Band gaps and cavity modes in dual phononic and photonic strip waveguides
,”
AIP Adv.
1
,
041901
(
2011
).
32.
S.
Mizuno
, “
Acoustic phonon modes and phononic bandgaps in GaN/AlN nanowire superlattices
,”
Nanoscale Res. Lett.
7
,
479
(
2012
).
33.
F.-C.
Hsu
,
J.-C.
Hsu
,
T.-C.
Huang
,
C.-H.
Wang
, and
P.
Chang
, “
Reducing support loss in micromechanical ring resonators using phononic band-gap structures
,”
J. Phys. D
44
,
375101
(
2011
).
34.
D.
Feng
,
D.
Xu
,
G.
Wu
,
B.
Xiong
, and
Y.
Wang
, “
Extending of band gaps in silicon based one-dimensional phononic crystal strips
,”
Appl. Phys. Lett.
103
,
151906
(
2013
).
35.
D.
Feng
,
D.
Xu
,
G.
Wu
,
B.
Xiong
, and
Y.
Wang
, “
Phononic crystal strip based anchors for reducing anchor loss of micromechanical resonators
,”
J. Appl. Phys.
115
,
024503
(
2014
).
36.
S.
Jiang
,
H.
Hu
, and
V.
Laude
, “
Low-frequency band gap in cross-like holey phononic crystal strip
,”
J. Phys. D
51
,
045601
(
2018
).
37.
Y.
Xie
,
A.
Konneker
,
B.-I.
Popa
, and
S. A.
Cummer
, “
Tapered labyrinthine acoustic metamaterials for broadband impedance matching
,”
Appl. Phys. Lett.
103
,
201906
(
2013
).
38.
C.
Zhou
,
B.
Yuan
,
Y.
Cheng
, and
X.
Liu
, “
Precise rainbow trapping for low-frequency acoustic waves with micro Mie resonance-based structures
,”
Appl. Phys. Lett.
108
,
063501
(
2016
).
39.
R.
Al Jahdali
and
Y.
Wu
, “
Coupled resonators for sound trapping and absorption
,”
Sci. Rep.
8
,
13855
(
2018
).
40.
J. M.
De Ponti
,
A.
Colombi
,
R.
Ardito
,
F.
Braghin
,
A.
Corigliano
, and
R. V.
Craster
, “
Graded elastic metasurface for enhanced energy harvesting
,”
New J. Phys.
22
,
013013
(
2020
).
41.
J. M.
De Ponti
,
A.
Colombi
,
E.
Riva
,
R.
Ardito
,
F.
Braghin
,
A.
Corigliano
, and
R. V.
Craster
, “
Experimental investigation of amplification, via a mechanical delay-line, in a rainbow-based metamaterial for energy harvesting
,”
Appl. Phys. Lett.
117
,
143902
(
2020
).
42.
G.
Hu
,
A. C.
Austin
,
V.
Sorokin
, and
L.
Tang
, “
Metamaterial beam with graded local resonators for broadband vibration suppression
,”
Mech. Syst. Signal Process.
146
,
106982
(
2021
).
43.
J.
Zhu
,
Y.
Chen
,
X.
Zhu
,
F. J.
Garcia-Vidal
,
X.
Yin
,
W.
Zhang
, and
X.
Zhang
, “
Acoustic rainbow trapping
,”
Sci. Rep.
3
,
1728
(
2013
).
44.
X.
Ni
,
Y.
Wu
,
Z.-G.
Chen
,
L.-Y.
Zheng
,
Y.-L.
Xu
,
P.
Nayar
,
X.-P.
Liu
,
M.-H.
Lu
, and
Y.-F.
Chen
, “
Acoustic rainbow trapping by coiling up space
,”
Sci. Rep.
4
,
7038
(
2014
).
45.
P.
Celli
,
B.
Yousefzadeh
,
C.
Daraio
, and
S.
Gonella
, “
Bandgap widening by disorder in rainbow metamaterials
,”
Appl. Phys. Lett.
114
,
091903
(
2019
).
46.
H.
Meng
,
D.
Chronopoulos
,
N.
Bailey
, and
L.
Wang
, “
Investigation of 2D rainbow metamaterials for broadband vibration attenuation
,”
Materials
13
,
5225
(
2020
).
47.
M.
Kheybari
,
Z.
Wang
,
H.
Xu
, and
O. R.
Bilal
, “
Programmability of ultrathin metasurfaces through curvature
,”
Extreme Mech. Lett.
52
,
101620
(
2022
).
48.
A.
Stein
,
M.
Nouh
, and
T.
Singh
, “
Widening, transition and coalescence of local resonance band gaps in multi-resonator acoustic metamaterials: From unit cells to finite chains
,”
J. Sound Vib.
523
,
116716
(
2022
).
49.
CRC Handbook of Chemistry and Physics
, 85th ed., edited by
D. R.
Lide
(
CRC Press
,
2004
).

Supplementary Material

You do not currently have access to this content.