Photovoltaic optoelectronic tweezers (PVOTs) have been proven to be an efficient tool for the manipulation and massive assembly of micro/nano-objects. The technique relies on strong electric fields produced by certain ferroelectric materials upon illumination due to the bulk photovoltaic effect (customarily LiNbO3:Fe). Despite the rapid development of PVOTs and the achievement of high-quality 1D and 2D particle patterning, research efforts aimed at the fabrication of combinatorial structures made up of multiple types of particles have been scarce. Here, we have established the working principles of three different methods to tackle this pending challenge. To that end, dielectrophoresis and/or electrophoresis acting on neutral and charged particles, respectively, have been suitably exploited. Simple mixed structures combining metallic and dielectric nanoparticles of different sizes have been obtained. The results lay the groundwork for future fabrication of more complex combinatorial structures by PVOT, where micro/nanoparticles are the basic building blocks of miniaturized functional devices.

1.
A. N.
Shipway
,
E.
Katz
, and
I.
Willner
, “
Nanoparticle arrays on surfaces for electronic, optical, and sensor applications
,”
ChemPhysChem
1
,
18
52
(
2000
).
2.
H.-N.
Barad
,
H.
Kwon
,
M.
Alarcón-Correa
, and
P.
Fischer
, “
Large area patterning of nanoparticles and nanostructures: Current status and future prospects
,”
ACS Nano
15
,
5861
5875
(
2021
).
3.
J. B.
Lee
,
H.
Walker
,
Y.
Li
,
T. W.
Nam
,
A.
Rakovich
,
R.
Sapienza
,
Y. S.
Yung
,
Y. S.
Nam
,
S. A.
Maier
, and
E.
Cortés
, “
Template dissolution interfacial patterning of single colloids for nanoelectrochemistry and nanosensing
,”
ACS Nano
14
,
17693
17703
(
2020
).
4.
C.
von Bojnicic-Kninski
,
R.
Popov
,
E.
Dörsam
,
F. F.
Loeffler
,
F.
Breitling
, and
A.
Nesterov-Mueller
, “
Combinatorial particle patterning
,”
Adv. Funct. Mater.
27
,
1703511
(
2017
).
5.
V.
Stadler
,
T.
Felgenhauer
,
M.
Beyer
,
S.
Fernandez
,
K.
Leibe
,
S.
Güttler
,
M.
Gröning
,
K.
König
,
G.
Torralba
,
M.
Hausmann
,
V.
Lindenstruth
,
A.
Nesterov
,
I.
Block
,
R.
Pipkorn
,
A.
Poustka
,
F. R.
Bischoff
, and
F.
Breitling
, “
Combinatorial synthesis of peptide arrays with a laser printer
,”
Angew. Chem. Int. Ed.
47
(
37
),
7132
7135
(
2008
).
6.
F.
Maerkle
,
F. F.
Loeffler
,
S.
Schillo
,
T.
Foertsch
,
B.
Muenster
,
J.
Striffler
,
C.
Schirwitz
,
F. R.
Bischoff
,
F.
Breitling
, and
A.
Nesterov-Mueller
, “
High-density peptide arrays with combinatorial laser fusing
,”
Adv. Mater.
26
,
3730
3734
(
2014
).
7.
F.
Loeffler
,
T.
Foertsch
,
R.
Popov
,
D.
Mattes
,
M.
Schlageter
,
M.
Sedlmayr
,
B.
Ridder
,
F.
Dang
,
C.
von Bojničić-Kninski
,
L.
Weber
,
A.
Fischer
,
J.
Greifenstein
,
V.
Bykovskaya
,
I.
Buliev
,
F. R.
Bischoff
,
L.
Hahn
,
M.
Meier
,
S.
Bräse
,
A.
Powell
,
T.
Silviu Balaban
,
F.
Breitling
, and
A.
Nesterov-Mueller
, “
High-flexibility combinatorial peptide synthesis with laser-based transfer of monomers in solid matrix material
,”
Nat. Commun.
7
,
11844
(
2016
).
8.
C.
von Bojnicic-Kninski
,
V.
Bykovskaya
,
F.
Maerkle
,
R.
Popov
,
A.
Palermo
,
D. S.
Mattes
,
L. K.
Weber
,
B.
Ridder
,
T. C.
Foertsch
,
A.
Welle
,
F. F.
Loeffler
,
F.
Breitling
, and
A.
Nesterov-Mueller
, “
Selective functionalization of microstructured surfaces by laser-assisted particle transfer
,”
Adv. Funct. Mater.
26
,
7067
7073
(
2016
).
9.
E.
Palleau
,
N. M.
Sangeetha
,
G.
Viau
,
J.-D.
Marty
, and
L.
Ressier
, “
Coulomb force directed single and binary assembly of nanoparticles from aqueous dispersions by AFM nanoxerography
,”
ACS Nano
5
,
4228
4235
(
2011
).
10.
E.
Palleau
and
L.
Ressier
, “
Combinatorial particle patterning by nanoxerography
,”
Adv. Funct. Mater.
28
,
1801075
(
2018
).
11.
X.
Xing
,
Z.
Man
,
J.
Bian
,
Y.
Yin
,
W.
Zhang
, and
Z.
Lu
, “
High-resolution combinatorial patterning of functional nanoparticles
,”
Nat. Commun.
11
,
6002
(
2020
).
12.
F.
Loeffler
,
C.
Schirwitz
,
J.
Wagner
,
K.
Koenig
,
F.
Maerkle
,
G.
Torralba
,
M.
Hausmann
,
F. R.
Bischoff
,
A.
Nesterov-Mueller
, and
F.
Breitling
, “
Biomolecule arrays using functional combinatorial particle patterning on microchips
,”
Adv. Funct. Mater.
22
,
2503
2508
(
2012
).
13.
N. M.
Sangeetha
,
P.
Moutet
,
D.
Lagarde
,
G.
Sallen
,
B.
Urbaszek
,
X.
Marie
,
G.
Viau
, and
L.
Ressier
, “
3D assembly of upconverting NaYF4 nanocrystals by AFM nanoxerography: Creation of anti-counterfeiting microtags
,”
Nanoscale
5
,
9587
9592
(
2013
).
14.
D.
Morales
,
L.
Teulon
,
E.
Palleau
,
T.
Alnasser
, and
L.
Ressier
, “
Single-step binary electrostatic directed assembly of active nanogels for smart concentration-dependent encryption
,”
Langmuir
34
,
1557
1563
(
2018
).
15.
N.
Isaac
,
L.
Schlag
,
S.
Katzer
,
H.
Nahrstedt
,
J.
Reiprich
,
J.
Pezoldt
,
T.
Stauden
, and
H. O.
Jacobs
, “
Combinatorial gas phase electrodeposition for fabrication of three-dimensional multimodal gas sensor array
,”
Mater. Today: Proc.
33
,
2451
2457
(
2020
).
16.
M.
Carrascosa
,
A.
García-Cabañes
,
M.
Jubera
,
J. B.
Ramiro
, and
F.
Agulló-López
, “
LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects
,”
Appl. Phys. Rev.
2
,
040605
(
2015
).
17.
A.
García-Cabañes
,
A.
Blázquez-Castro
,
L.
Arizmendi
,
F.
Agulló-López
, and
M.
Carrascosa
, “
Recent achievements on photovoltaic optoelectronic tweezers based on lithium niobate
,”
Crystals
8
,
65
(
2018
).
18.
A. M.
Glass
,
D.
Von der Linde
, and
T.
Negran
, “
High voltage bulk photovoltaic effect and the photorefractive process in LiNbO3
,”
Appl. Phys. Lett.
25
,
233
(
1974
).
19.
B.
Sturmann
and
V.
Fridkin
,
Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials
(
Gordon and Breach Science Publishers
,
Philadelphia
,
1992
).
20.
J.
Villarroel
,
H.
Burgos
,
A.
García-Cabañes
,
M.
Carrascosa
,
A.
Blázquez-Castro
, and
F.
Agulló-López
, “
Photovoltaic versus optical tweezers
,”
Opt. Express
19
,
24320
24330
(
2011
).
21.
P. Y.
Chiou
,
A. T.
Ohta
, and
M. C.
Wu
, “
Massively parallel manipulation of single cells and microparticles using optical images
,”
Nature
436
,
370
372
(
2005
).
22.
H. A.
Eggert
,
F. Y.
Kuhnert
,
K.
Buse
,
J. R.
Adleman
, and
D.
Psaltis
, “
Trapping of dielectric particles with light-induced space-charge fields
,”
Appl. Phys. Lett.
90
,
241909
(
2007
).
23.
M.
Esseling
,
A.
Zaltron
,
N.
Argiolas
,
G.
Nava
,
J.
Imbrock
,
I.
Cristiani
,
C.
Sada
, and
C.
Denz
, “
Highly reduced iron-doped lithium niobate for optoelectronic tweezers
,”
Appl. Phys. B
113
,
191
197
(
2013
).
24.
X.
Zhang
,
J.
Wang
,
B.
Tang
,
X.
Tan
,
R. A.
Rupp
,
L.
Pan
,
Y.
Kong
,
Q.
Sun
, and
J.
Xu
, “
Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals
,”
Opt. Express
17
,
9981
(
2009
).
25.
M.
Esseling
,
A.
Zaltron
,
C.
Sada
, and
C.
Denz
, “
Charge sensor and particle trap based on z-cut lithium niobate
,”
Appl. Phys. Lett.
103
,
061115
(
2013
).
26.
J. F.
Muñoz-Martínez
,
J. B.
Ramiro
,
A.
Alcázar
,
A.
García-Cabañes
, and
M.
Carrascosa
, “
Electrophoretic versus dielectrophoretic nanoparticle patterning using optoelectronic tweezers
,”
Phys. Rev. Appl.
7
,
064027
(
2017
).
27.
M.
Jubera
,
I.
Elvira
,
A.
García-Cabañes
,
J. L.
Bella
, and
M.
Carrascosa
, “
Trapping and patterning of biological objects using photovoltaic tweezers
,”
Appl. Phys. Lett.
108
,
023703
(
2016
).
28.
M.
Gazzetto
,
G.
Nava
,
A.
Zaltron
,
I.
Cristiani
,
C.
Sada
, and
P.
Minzioni
, “
Numerical and experimental study of optoelectronic trapping on iron-doped lithium niobate substrate
,”
Crystals
6
(
10
),
123
(
2016
).
29.
L.
Miccio
,
V.
Marchesano
,
M.
Mugnano
,
S.
Grilli
, and
P.
Ferraro
, “
Light induced DEP for immobilizing and orienting Escherichia coli bacteria
,”
Opt. Lasers Eng.
76
,
34
(
2016
).
30.
I.
Elvira
,
J. F.
Muñoz-Martínez
,
Á.
Barroso
,
C.
Denz
,
J. B.
Ramiro
,
A.
García-Cabañes
,
F.
Agulló-López
, and
M.
Carrascosa
, “
Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers
,”
Opt. Lett.
43
(
1
),
30
33
(
2018
).
31.
J. F.
Muñoz-Martínez
,
M.
Jubera
,
J.
Matarrubia
,
A.
García-Cabañes
,
F.
Agulló-López
, and
M.
Carrascosa
, “
Diffractive optical devices produced by light-assisted trapping of nano-particles
,”
Opt. Lett.
41
(
2
),
432
435
(
2016
).
32.
I.
Elvira
,
J. F.
Muñoz-Martínez
,
M.
Jubera
,
A.
García-Cabañes
,
J. L.
Bella
,
P.
Haro-González
,
M. A.
Díaz-García
,
F.
Agulló-López
, and
M.
Carrascosa
, “
Plasmonic enhancement in the fluorescence of organic and biological molecules by photovoltaic tweezing assembly
,”
Adv. Mater. Technol.
2
,
1700024
(
2017
).
33.
J.
Matarrubia
,
A.
García-Cabañes
,
J. L.
Plaza
,
F.
Agulló-López
, and
M.
Carrascosa
, “
Optimization of particle trapping and patterning via photovoltaic tweezers: Role of light modulation and particle size
,”
J. Phys. D: Appl. Phys.
47
,
265101
(
2014
).
34.
C.
Sebastián-Vicente
,
E.
Muñoz-Cortés
,
A.
García-Cabañes
,
F.
Agulló-López
, and
M.
Carrascosa
, “
Real-time operation of photovoltaic optoelectronic tweezers: New strategies for massive nano-object manipulation and reconfigurable patterning
,”
Part. Part. Syst. Charact.
36
,
1900233
(
2019
).
35.
C.
Sebastián-Vicente
,
A.
García-Cabañes
,
F.
Agulló-López
, and
M.
Carrascosa
, “
Light and thermally induced charge transfer and ejection of micro-/nanoparticles from ferroelectric crystal surfaces
,”
Adv. Electron. Mater.
8
,
2100761
(
2022
).
36.
T. B.
Jones
,
Electromechanics of Particles
(
Cambridge University Press
,
Cambridge
,
1995
).
37.
A.
Puerto
,
J. F.
Muñoz-Martínez
,
A.
Méndez
,
L.
Arizmendi
,
A.
García-Cabañes
,
F.
Agulló-López
, and
M.
Carrascosa
, “
Synergy between pyroelectric and photovoltaic effects for optoelectronic nanoparticle manipulation
,”
Opt. Express
27
,
804
815
(
2019
).
You do not currently have access to this content.