Formation of severe adhesion on electrosurgical devices during their interaction with biofluids is an inherent problem that often causes reduced cutting efficiency and failed hemostasis. The introduction of (super-) hydrophobic surfaces is a favorable option for anti-adhesion, but the mechanisms related to their evolution with biofluids under electric fields are still not fully understood. Here, we investigated the evolution of blood plasma droplets on a superhydrophobic microstructured (SHM) surface under direct-current (DC) and alternating-current (AC) electric fields. The electrolysis of plasma droplets leads to the formation and diffusion of bubbles accompanied by a rise in temperature, while in turn, the electrolysis is suppressed as the bubbles fill the droplets, followed by a decrease in temperature. We show that under the DC electric field, the bubbles produced by papillae on the SHM surface can effectively prevent directional adsorption of plasma proteins compared to the flat surface, whereas the AC electric field induces oscillations in plasma proteins, resulting in even less adhesion. These findings provide valuable basic information for understanding the anti-adhesion mechanism of electrosurgical devices at a microscopic level.

1.
K. L.
Ou
,
J. S.
Chu
,
H.
Hosseinkhani
,
J. F.
Chiou
, and
C. H.
Yu
,
Surg. Endosc.
28
,
2174
2188
(
2014
).
2.
P.
Zhang
,
H.
Chen
,
L.
Zhang
, and
D.
Zhang
,
Appl. Surf. Sci.
385
,
249
256
(
2016
).
3.
Z.
Han
,
J.
Fu
,
X.
Feng
,
S.
Niu
,
J.
Zhang
, and
L.
Ren
,
RSC Adv.
7
,
45287
45293
(
2017
).
4.
G.
Liu
,
P.
Zhang
,
Y.
Liu
,
D.
Zhang
, and
H.
Chen
,
Micromachines
9
,
591
(
2018
).
5.
J. Y.
Park
,
M.
Tenjimbayashi
,
J.
Muto
, and
S.
Shiratori
,
ACS Biomater. Sci. Eng.
4
,
1891
1899
(
2018
).
6.
G.
Yao
,
D.
Zhang
,
D.
Geng
, and
X.
Jiang
,
Ultrasonics
84
,
126
133
(
2018
).
7.
P.
Zhang
,
G.
Liu
,
D.
Zhang
, and
H.
Chen
,
ACS Appl. Mater. Interfaces
10
,
33713
33720
(
2018
).
8.
Y.
Liu
,
J.
Chen
,
D.
Guo
,
M.
Cao
, and
L.
Jiang
,
ACS Appl. Mater. Interfaces
7
,
13645
13652
(
2015
).
9.
J.
Yang
,
J.
Li
,
X.
Jia
,
Y.
Li
, and
H.
Song
,
ACS Appl. Mater. Interfaces
12
,
28645
28654
(
2020
).
10.
H.
Wang
,
M.
He
,
H.
Liu
, and
Y.
Guan
,
ACS Appl. Mater. Interfaces
11
,
25586
25594
(
2019
).
11.
Q.
Pan
,
Y.
Cao
,
W.
Xue
,
D.
Zhu
, and
W.
Liu
,
Langmuir
35
,
11414
11421
(
2019
).
12.
C.
Li
,
Y.
Yang
,
L.
Yang
, and
Z.
Shi
,
Micromachines
10
,
816
(
2019
).
13.
K.
Li
,
L.
Lu
,
H.
Chen
,
G.
Jiang
,
H.
Ding
,
M.
Yu
, and
Y.
Xie
,
Front. Mech. Eng.
18
,
12
(2023).
14.
S.
Bansal
and
S.
Subramanian
,
Adv. Mater. Technol.
6
,
2100491
(
2021
).
15.
Y.
Zhong
,
H.
Yu
,
P.
Zhou
,
Y.
Wen
,
W.
Zhao
,
W.
Zou
,
H.
Luo
,
Y.
Wang
, and
L.
Liu
,
ACS Appl. Mater. Interfaces
13
,
39550
39560
(
2021
).
16.
B.
Tang
,
C.
Meng
,
L.
Zhuang
,
J.
Groenewold
,
Y.
Qian
,
Z.
Sun
,
X.
Liu
,
J.
Gao
, and
G.
Zhou
,
ACS Appl. Mater. Interfaces
12
,
38723
38729
(
2020
).
17.
Q.
Vo
and
T.
Tran
,
Appl. Phys. Lett.
118
,
161603
(
2021
).
18.
K.
Li
,
Y.
Xie
,
J.
Lei
,
S.
Zhang
,
Z.
Liu
, and
L.
Lu
,
Surf. Coat. Technol.
427
,
127817
(
2021
).
19.
A. B. D.
Cassie
and
S.
Baxter
,
Trans. Faraday Soc.
40
,
546
551
(
1944
).
20.
F. R.
Smith
and
D.
Brutin
,
Curr. Opin. Colloid Interface Sci.
36
,
78
83
(
2018
).
21.
M. S.
Wrighton
,
A. B.
Ellis
,
P. T.
Wolczanski
, and
D. L.
Morse
,
J. Am. Chem. Soc.
98
,
2774
2779
(
1976
).
22.
P.
Garcia-Sanchez
,
A.
Ramos
, and
F.
Mugele
,
Phys. Rev. E
81
,
015303
(
2010
).
23.
R. N.
Wenzel
,
Ind. Eng. Chem.
28
,
988
994
(
1936
).
24.
X.
Pang
,
M.
Duan
,
H.
Liu
,
Y.
Xi
,
H.
Shi
, and
X.
Li
,
ACS Appl. Mater. Interfaces
14
,
11999
12009
(
2022
).

Supplementary Material

You do not currently have access to this content.