We experimentally demonstrate the generation of spin-wave frequency combs based on the nonlinear interaction of propagating spin waves in a microstructured waveguide. By means of time- and space-resolved Brillouin light scattering spectroscopy, we show that the simultaneous excitation of spin waves with different frequencies leads to a cascade of four-magnon scattering events, which ultimately results in well-defined frequency combs. Their spectral weight can be tuned by the choice of amplitude and frequency of the input signals. Furthermore, we introduce a model for stimulated four-magnon scattering, which describes the formation of spin-wave frequency combs in the frequency and time domain.

1.
M.
Bellini
and
T. W.
Hänsch
, “
Phase-locked white-light continuum pulses: Toward a universal optical frequency-comb synthesizer
,”
Opt. Lett.
25
(
14
),
1049
1051
(
2000
).
2.
T.
Fortier
and
E.
Baumann
, “
20 years of developments in optical frequency comb technology and applications
,”
Commun. Phys.
2
(
1
),
153
(
2019
).
3.
D. J.
Jones
,
S. A.
Diddams
,
M. S.
Taubman
,
S. T.
Cundiff
,
L.-S.
Ma
, and
J. L.
Hall
, “
Frequency comb generation using femtosecond pulses and cross-phase modulation in optical fiber at arbitrary center frequencies
,”
Opt. Lett.
25
(
5
),
308
310
(
2000
).
4.
H.
Benner
,
B. A.
Kalinikos
,
N. G.
Kovshikov
, and
M. P.
Kostylev
, “
Observation of spin-wave envelope dark solitons in ferromagnetic films
,”
JETP Lett.
72
(
4
),
213
216
(
2000
).
5.
J. W.
Boyle
,
S. A.
Nikitov
,
A. D.
Boardman
, and
K.
Xie
, “
Observation of cross-phase induced modulation instability of travelling magnetostatic waves in ferromagnetic films
,”
J. Magn. Magn. Mater.
173
(
3
),
241
252
(
1997
).
6.
B. A.
Kalinikos
,
N. G.
Kovshikov
, and
A. N.
Slavin
, “
Envelope solitons of highly dispersive and low dispersive spin waves in magnetic films
,”
J. Appl. Phys.
69
,
5712
(
1991
).
7.
A. N.
Slavin
, “
Thresholds of envelope soliton formation in a weakly dissipative medium
,”
Phys. Rev. Lett.
77
,
4644
4647
(
1996
).
8.
R. A.
Staudinger
,
P.
Kabos
,
H.
Xia
,
B. T.
Faber
, and
C. E.
Patton
, “
Calculation of the formation time for microwave magnetic envelope solitons
,”
IEEE Trans. Magn.
34
(
4
),
2334
2338
(
1998
).
9.
M. A.
Tsankov
,
M.
Chen
, and
C. E.
Patton
, “
Forward volume wave microwave envelope solitons in yttrium iron garnet films: Propagation, decay, and collision
,”
J. Appl. Phys.
76
(
7
),
4274
4289
(
1994
).
10.
M.
Wu
,
B. A.
Kalinikos
, and
C. E.
Patton
, “
Generation of dark and bright spin wave envelope soliton trains through self-modulational instability in magnetic films
,”
Phys. Rev. Lett.
93
(
15
),
157207
(
2004
).
11.
Y.
Khivintsev
,
J.
Marsh
,
V.
Zagorodnii
,
I.
Harward
,
J.
Lovejoy
,
P.
Krivosik
,
R. E.
Camley
, and
Z.
Celinski
, “
Nonlinear amplification and mixing of spin waves in a microstrip geometry with metallic ferromagnets
,”
Appl. Phys. Lett.
98
(
4
),
042505
(
2011
).
12.
J.
Marsh
and
R. E.
Camley
, “
Two-wave mixing in nonlinear magnetization dynamics: A perturbation expansion of the Landau–Lifshitz–Gilbert equation
,”
Phys. Rev. B
86
(
22
),
224405
(
2012
).
13.
J.
Marsh
,
V.
Zagorodnii
,
Z.
Celinski
, and
R. E.
Camley
, “
Nonlinearly generated harmonic signals in ultra-small waveguides with magnetic films: Tunable enhancements of 2nd and 4th harmonics
,”
Appl. Phys. Lett.
100
(
10
),
102404
(
2012
).
14.
Z.
Wang
,
H. Y.
Yuan
,
Y.
Cao
,
Z.-X.
Li
,
R. A.
Duine
, and
P.
Yan
, “
Magnonic frequency comb through nonlinear magnon-skyrmion scattering
,”
Phys. Rev. Lett.
127
,
037202
(
2021
).
15.
T.
Hula
,
K.
Schultheiss
,
A.
Buzdakov
,
L.
Körber
,
M.
Bejarano
,
L.
Flacke
,
L.
Liensberger
,
M.
Weiler
,
J. M.
Shaw
,
H. T.
Nembach
,
J.
Fassbender
, and
H.
Schultheiss
, “
Nonlinear losses in magnon transport due to four-magnon scattering
,”
Appl. Phys. Lett.
117
(
4
),
042404
(
2020
).
16.
H.
Schultheiss
,
K.
Vogt
, and
B.
Hillebrands
, “
Direct observation of nonlinear four-magnon scattering in spin-wave microconduits
,”
Phys. Rev. B
86
(
5
),
054414
(
2012
).
17.
H.
Suhl
, “
The theory of ferromagnetic resonance at high signal powers
,”
J. Phys. Chem. Solids
1
,
209
227
(
1957
).
18.
P.
Krivosik
and
C. E.
Patton
, “
Hamiltonian formulation of nonlinear spin-wave dynamics: Theory and applications
,”
Phys. Rev. B
82
(
18
),
184428
(
2010
).
19.
H. G.
Bauer
,
P.
Majchrak
,
T.
Kachel
,
C. H.
Back
, and
G.
Woltersdorf
, “
Nonlinear spin-wave excitations at low magnetic bias fields
,”
Nat. Commun.
6
,
8274
(
2015
).
20.
V. E.
Demidov
,
J.
Jersch
,
K.
Rott
,
P.
Krzysteczko
,
G.
Reiss
, and
S. O.
Demokritov
, “
Nonlinear propagation of spin waves in microscopic magnetic stripes
,”
Phys. Rev. Lett.
102
(
17
),
177207
(
2009
).
21.
M. M.
Scott
,
C. E.
Patton
,
M. P.
Kostylev
, and
B. A.
Kalinikos
, “
Nonlinear damping of high-power magnetostatic waves in yttrium–iron–garnet films
,”
J. Appl. Phys.
95
(
11
),
6294
6301
(
2004
).
22.
A.
Venugopal
,
T.
Qu
, and
R. H.
Victora
, “
Nonlinear parallel-pumped FMR: Three and four magnon processes
,”
IEEE Trans. Microwave Theory Tech.
68
(
2
),
602
610
(
2020
).
23.
K.
Moon
and
S. M.
Girvin
, “
Theory of microwave parametric down-conversion and squeezing using circuit QED
,”
Phys. Rev. Lett.
95
,
140504
(
2005
).
24.
X.
Fang
,
M.
Bai
,
X.
Ye
,
J.
Miao
, and
Z.
Zheng
, “
Ultra-broadband microwave frequency down-conversion based on optical frequency comb
,”
Opt. Express
23
(
13
),
17111
(
2015
).
25.
C. I.
Yeh
,
W. S.
Feng
, and
C. Y.
Hsu
, “
0.9–10.6 GHz UWB mixer using current bleeding for multi-band application
,”
Electron. Lett.
50
(
3
),
186
187
(
2014
).
26.
L.
Flacke
,
L.
Liensberger
,
M.
Althammer
,
H.
Huebl
,
S.
Geprägs
,
K.
Schultheiss
,
A.
Buzdakov
,
T.
Hula
,
H.
Schultheiss
,
E. R. J.
Edwards
,
H. T.
Nembach
,
J. M.
Shaw
,
R.
Gross
, and
M.
Weiler
, “
High spin-wave propagation length consistent with low damping in a metallic ferromagnet
,”
Appl. Phys. Lett.
115
(
12
),
122402
(
2019
).
27.
H. S.
Korner
,
M. A. W.
Schoen
,
T.
Mayer
,
M. M.
Decker
,
J.
Stigloher
,
T.
Weindler
,
T. N. G.
Meier
,
M.
Kronseder
, and
C. H.
Back
,
Appl. Phys. Lett.
111
(
13
),
132406
(
2017
).
28.
M. A.
Schoen
,
D.
Thonig
,
M. L.
Schneider
,
T. J.
Silva
,
H. T.
Nembach
,
O.
Eriksson
,
O.
Karis
, and
J. M.
Shaw
, “
Ultra-low magnetic damping of a metallic ferromagnet
,”
Nat. Phys.
12
(
9
),
839
842
(
2016
).
29.
The stripe of Co25Fe75 was processed on Si/SiO2 using electron beam lithography, magnetron sputtering, and subsequent lift-off. The metallic thin film was deposited with a thickness of 30 nm. Two shorted-CPW gold antennas, processed via e-beam lithography, thermal evaporation, and lift-off, were used as the microwave inputs RF1 and RF2.
30.
V. S.
L'vov
,
Wave Turbulence under Parametric Excitation
(
Springer-Verlag
,
New York
,
1994
).
31.
T.
Sebastian
,
K.
Schultheiss
,
B.
Obry
,
B.
Hillebrands
, and
H.
Schultheiss
, “
Micro-focused Brillouin light scattering: Imaging spin waves at the nanoscale
,”
Front. Phys.
3
,
35
(
2015
).
32.
B. A.
Kalinikos
and
A. N.
Slavin
, “
Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions
,”
J. Phys. C: Solid State Phys.
19
(
35
),
7013
7033
(
1986
).
33.
L.
Körber
,
K.
Schultheiss
,
T.
Hula
,
R.
Verba
,
J.
Fassbender
,
A.
Kákay
, and
H.
Schultheiss
, “
Nonlocal stimulation of three-magnon splitting in a magnetic vortex
,”
Phys. Rev. Lett.
125
(
20
),
207203
(
2020
).
34.
T.
Brächer
,
P.
Pirro
, and
B.
Hillebrands
, “
Parallel pumping for magnon spintronics: Amplification and manipulation of magnon spin currents on the micron-scale
,”
Phys. Rep.
699
,
1
34
(
2017
).
35.
A.
Vansteenkiste
,
J.
Leliaert
,
M.
Dvornik
,
M.
Helsen
,
F.
Garcia-Sanchez
, and
B.
Van Waeyenberge
, “
The design and verification of MuMax3
,”
AIP Adv.
4
(
10
),
107133
(
2014
).
36.
We modeled the conduit using 4096 cells along the long axis, 64 cells along the short axis, and 1 cell along the film normal. For excitation, we defined two rectangular regions across the stripe where dynamic out-of-plane fields could be applied. The position of these areas was similar to the fabricated sample. The following material parameters were used: Aex=26×1012 J/m3, Msat=1700×103 A/m, and α=0.01.
You do not currently have access to this content.