Efficient heat dissipation in micro/nano electronics requires long-distance propagation of heat carriers operated above room temperature. However, thermal phonons—the primary heat carriers in dielectric nanomaterials—dissipate the thermal energy after just a few hundred nanometers. Theory predicts that the mean free path of surface phonon-polaritons (SPhPs) can be hundreds of micrometers, which may improve the overall dissipation of heat in nanomaterials. In this work, we experimentally demonstrate such long-distance heat transport by SPhPs. Using the 3ω technique, we measure the in-plane thermal conductivity of SiN nanomembranes for different heater-sensor distances, membrane thicknesses, and temperatures. We find that thin nanomembranes support heat transport by SPhPs, as evidenced by an increase in the thermal conductivity with temperature. Remarkably, the thermal conductivity measured 200 μm away from the heater is consistently higher than that measured 100 μm closer. This result suggests that heat conduction by SPhPs is quasi-ballistically over at least hundreds of micrometers. Our findings pave the way for coherent heat manipulations above room temperature over macroscopic distances, which impacts the applications in thermal management and polaritonics.

1.
L.
Yang
,
Y.
Tao
,
Y.
Zhu
,
M.
Akter
,
K.
Wang
,
Z.
Pan
,
Y.
Zhao
,
Q.
Zhang
,
Y.-Q.
Xu
,
R.
Chen
 et al, “
Observation of superdiffusive phonon transport in aligned atomic chains
,”
Nat. Nanotechnol.
16
,
764
768
(
2021
).
2.
R.
Anufriev
,
S.
Gluchko
,
S.
Volz
, and
M.
Nomura
, “
Quasi-ballistic heat conduction due to Lévy phonon flights in silicon nanowires
,”
ACS Nano
12
,
11928
11935
(
2018
).
3.
D.
Vakulov
,
S.
Gireesan
,
M. Y.
Swinkels
,
R.
Chavez
,
T.
Vogelaar
,
P.
Torres
,
A.
Campo
,
M.
De Luca
,
M. A.
Verheijen
,
S.
Koelling
,
L.
Gagliano
,
J. E. M.
Haverkort
,
F. X.
Alvarez
,
P. A.
Bobbert
,
I.
Zardo
, and
E. P. A. M.
Bakkers
, “
Ballistic phonons in ultrathin nanowires
,”
Nano Lett.
20
,
2703
(
2020
).
4.
E.
Pop
, “
Energy dissipation and transport in nanoscale devices
,”
Nano Res.
3
,
147
169
(
2010
).
5.
R.
Anufriev
,
J.
Ordonez-Miranda
, and
M.
Nomura
, “
Measurement of the phonon mean free path spectrum in silicon membranes at different temperatures using arrays of nanoslits
,”
Phys. Rev. B
101
,
115301
(
2020
).
6.
A.
Malhotra
and
M.
Maldovan
, “
Surface scattering controlled heat conduction in semiconductor thin films
,”
J. Appl. Phys.
120
,
204305
(
2016
).
7.
K. T.
Regner
,
D. P.
Sellan
,
Z.
Su
,
C. H.
Amon
,
A. J.
McGaughey
, and
J. A.
Malen
, “
Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance
,”
Nat. Commun.
4
,
1640
(
2013
).
8.
D.
Thompson
,
L.
Zhu
,
R.
Mittapally
,
S.
Sadat
,
Z.
Xing
,
P.
McArdle
,
M. M.
Qazilbash
,
P.
Reddy
, and
E.
Meyhofer
, “
Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit
,”
Nature
561
,
216
221
(
2018
).
9.
K.
Joulain
,
J.-P.
Mulet
,
F.
Marquier
,
R.
Carminati
, and
J.-J.
Greffet
, “
Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field
,”
Surf. Sci. Rep.
57
,
59
112
(
2005
).
10.
D.-Z. A.
Chen
and
G.
Chen
, “
Measurement of silicon dioxide surface phonon-polariton propagation length by attenuated total reflection
,”
Appl. Phys. Lett.
91
,
121906
(
2007
).
11.
D.-Z. A.
Chen
and
G.
Chen
, “
Heat flow in thin films via surface phonon-polaritons
,”
Front. Heat Mass Transfer
1
(
2
),
023005
(
2010
).
12.
G.
Baffou
,
C.
Girard
, and
R.
Quidant
, “
Mapping heat origin in plasmonic structures
,”
Phys. Rev. Lett.
104
,
136805
(
2010
).
13.
J.-P.
Mulet
,
K.
Joulain
,
R.
Carminati
, and
J.-J.
Greffet
, “
Nanoscale radiative heat transfer between a small particle and a plane surface
,”
Appl. Phys. Lett.
78
,
2931
2933
(
2001
).
14.
V.
Dusastre
and
L.
Martiradonna
, “
Materials for sustainable energy
,”
Nat. Mater.
16
,
15
(
2017
).
15.
K.
Biswas
,
J.
He
,
I. D.
Blum
,
C.-I.
Wu
,
T. P.
Hogan
,
D. N.
Seidman
,
V. P.
Dravid
, and
M. G.
Kanatzidis
, “
High-performance bulk thermoelectrics with all-scale hierarchical architectures
,”
Nature
489
,
414
418
(
2012
).
16.
D.-Z. A.
Chen
,
A.
Narayanaswamy
, and
G.
Chen
, “
Surface phonon-polariton mediated thermal conductivity enhancement of amorphous thin films
,”
Phys. Rev. B
72
,
155435
(
2005
).
17.
J.
Ordonez-Miranda
,
L.
Tranchant
,
T.
Tokunaga
,
B.
Kim
,
B.
Palpant
,
Y.
Chalopin
,
T.
Antoni
, and
S.
Volz
, “
Anomalous thermal conductivity by surface phonon-polaritons of polar nano thin films due to their asymmetric surrounding media
,”
J. Appl. Phys.
113
,
084311
(
2013
).
18.
X.
Lin
,
Y.
Yang
,
N.
Rivera
,
J. J.
López
,
Y.
Shen
,
I.
Kaminer
,
H.
Chen
,
B.
Zhang
,
J. D.
Joannopoulos
, and
M.
Soljačić
, “
All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene–boron nitride heterostructures
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
6717
6721
(
2017
).
19.
J.-J.
Greffet
,
R.
Carminati
,
K.
Joulain
,
J.-P.
Mulet
,
S.
Mainguy
, and
Y.
Chen
, “
Coherent emission of light by thermal sources
,”
Nature
416
,
61
64
(
2002
).
20.
M.
Francoeur
,
M. P.
Mengüç
, and
R.
Vaillon
, “
Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons
,”
J. Appl. Phys.
107
,
034313
(
2010
).
21.
N.
Rivera
,
G.
Rosolen
,
J. D.
Joannopoulos
,
I.
Kaminer
, and
M.
Soljačić
, “
Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
13607
13612
(
2017
).
22.
N.
Ocelic
and
R.
Hillenbrand
, “
Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation
,”
Nat. Mater.
3
,
606
609
(
2004
).
23.
J.
Ordonez-Miranda
,
L.
Tranchant
,
Y.
Chalopin
,
T.
Antoni
, and
S.
Volz
, “
Thermal conductivity of nano-layered systems due to surface phonon-polaritons
,”
J. Appl. Phys.
115
,
054311
(
2014
).
24.
S.
Tachikawa
,
J.
Ordonez-Miranda
,
Y.
Wu
,
L.
Jalabert
,
R.
Anufriev
,
S.
Volz
, and
M.
Nomura
, “
High surface phonon-polariton in-plane thermal conductance along coupled films
,”
Nanomaterials
10
,
1383
(
2020
).
25.
Y.
Wu
,
J.
Ordonez-Miranda
,
S.
Gluchko
,
R.
Anufriev
,
D. D. S.
Meneses
,
L.
Del Campo
,
S.
Volz
, and
M.
Nomura
, “
Enhanced thermal conduction by surface phonon-polaritons
,”
Sci. Adv.
6
,
eabb4461
(
2020
).
26.
L.
Tranchant
,
S.
Hamamura
,
J.
Ordonez-Miranda
,
T.
Yabuki
,
A.
Vega-Flick
,
F.
Cervantes-Alvarez
,
J. J.
Alvarado-Gil
,
S.
Volz
, and
K.
Miyazaki
, “
Two-dimensional phonon polariton heat transport
,”
Nano Lett.
19
,
6924
6930
(
2019
).
27.
N.
Tambo
,
Y.
Liao
,
C.
Zhou
,
E. M.
Ashley
,
K.
Takahashi
,
P. F.
Nealey
,
Y.
Naito
, and
J.
Shiomi
, “
Ultimate suppression of thermal transport in amorphous silicon nitride by phononic nanostructure
,”
Sci. Adv.
6
,
eabc0075
(
2020
).
28.
D. G.
Cahill
and
R. O.
Pohl
, “
Thermal conductivity of amorphous solids above the plateau
,”
Phys. Rev. B
35
,
4067
(
1987
).
29.
D. G.
Cahill
, “
Thermal conductivity measurement from 30 to 750 k: The 3ω method
,”
Rev. Sci. Instrum.
61
,
802
808
(
1990
).
30.
Y.
Guo
,
S.
Tachikawa
,
S.
Volz
,
M.
Nomura
, and
J.
Ordonez-Miranda
, “
Quantum of thermal conductance of nanofilms due to surface-phonon polaritons
,”
Phys. Rev. B
104
,
L201407
(
2021
).
31.
R.
Anufriev
,
S.
Gluchko
,
S.
Volz
, and
M.
Nomura
, “
Probing ballistic thermal conduction in segmented silicon nanowires
,”
Nanoscale
11
,
13407
13414
(
2019
).
32.
Q.
Zhang
,
C.
Liu
,
X.
Liu
,
J.
Liu
,
Z.
Cui
,
Y.
Zhang
,
L.
Yang
,
Y.
Zhao
,
T. T.
Xu
,
Y.
Chen
 et al, “
Thermal transport in quasi-1D van der Waals crystal Ta2Pd3Se8 nanowires: Size and length dependence
,”
ACS Nano
12
,
2634
2642
(
2018
).
33.
Y.
Pan
,
J.
Zhou
, and
G.
Chen
, “
Quantifying thermal transport in amorphous silicon using mean free path spectroscopy
,”
Phys. Rev. B
101
,
144203
(
2020
).
34.
M. C.
Wingert
,
J.
Zheng
,
S.
Kwon
, and
R.
Chen
, “
Thermal transport in amorphous materials: A review
,”
Semicond. Sci. Technol.
31
,
113003
(
2016
).
35.
K.
Joulain
,
Y.
Ezzahri
,
J.
Drevillon
,
B.
Rousseau
, and
D. D. S.
Meneses
, “
Radiative thermal rectification between SiC and SiO2
,”
Opt. Express
23
,
A1388
A1397
(
2015
).
36.
J.
Ordonez-Miranda
,
S.
Volz
, and
M.
Nomura
, “
Surface phonon-polariton heat capacity of polar nanofilms
,”
Phys. Rev. Appl.
15
,
054068
(
2021
).
37.
J. B.
Lee
,
K.
Kang
, and
S. H.
Lee
, “
Comparison of theoretical models of electron-phonon coupling in thin gold films irradiated by femtosecond pulse lasers
,”
Mater. Trans.
52
,
547
553
(
2011
).

Supplementary Material

You do not currently have access to this content.