We propose an all-optical wavelength converter for the mid-infrared spectral range with enhanced conversion efficiency. A highly nonlinear MXene-decorated microfiber is fabricated by the optical deposition method as the conversion medium, and the fiber exhibits a remarkable nonlinear optical response. We combine the benefits of the two-dimensional MXene materials and tapered microfiber to promote conversion efficiency. Homebuilt holmium-doped fiber lasers emitting at 2.05 μm wavelength are used as pump and signal sources. The experimental conversion efficiency observed by the optical spectrum analyzer is measured at –27.22 dB. This optical device allows an arbitrary tuning range of 17 nm. The fluctuations of the conversion efficiency remain within 1 dB during 2 h. The results of this study may contribute to the realization of optical converter application in the all-optical network at 2 μm wavelength.

1.
T.
Jin
,
J.
Zhou
, and
P. T.
Lin
, “
Mid-infrared electro-optical modulation using monolithically integrated titanium dioxide on lithium niobate optical waveguides
,”
Sci. Rep.
9
,
15130
(
2019
).
2.
C. Y.
Wang
,
T.
Herr
,
P.
Del'Haye
,
A.
Schliesser
,
J.
Hofer
,
R.
Holzwarth
,
T. W.
Hänsch
,
N.
Picqué
, and
T. J.
Kippenberg
, “
Mid-infrared optical frequency combs at 2.5 m based on crystalline microresonators
,”
Nat. Commun.
4
,
1345
(
2013
).
3.
K.
Huang
,
Y.
Wang
,
J.
Fang
,
W.
Kang
,
Y.
Sun
,
Y.
Liang
,
Q.
Hao
,
M.
Yan
,
H.
Zeng
,
H.
Zeng
,
H.
Zeng
,
H.
Zeng
, and
H.
Zeng
, “
Mid-infrared photon counting and resolving via efficient frequency upconversion
,”
Photonics Res.
9
,
259
265
(
2021
).
4.
W.
Ma
,
T.
Wang
,
Y.
Zhang
,
P.
Liu
,
Y.
Su
,
Q.
Jia
,
M.
Bi
,
P.
Zhang
, and
H.
Jiang
, “
Widely tunable 2 μm continuous-wave and mode-locked fiber laser
,”
Appl. Opt.
56
,
3342
3346
(
2017
).
5.
W.
Ma
,
T.
Wang
,
F.
Wang
,
D.
Zhao
,
R.
Liu
,
J.
Zhang
, and
H.
Jiang
, “
2.07-μm, 10 GHz repetition rate, multi-wavelength actively mode-locked fiber laser
,”
IEEE Photonics Technol. Lett.
31
,
242
245
(
2019
).
6.
P.
Lin
,
T.
Wang
,
W.
Ma
,
J.
Chen
,
Z.
Jiang
, and
C.
Yu
, “
2-μm free-space data transmission based on an actively mode-locked holmium-doped fiber laser
,”
IEEE Photonics Technol. Lett.
32
,
223
226
(
2020
).
7.
X.
Zhang
,
W.
Li
,
J.
Li
,
H.
Xu
,
Z.
Cai
, and
Z.
Luo
, “
Mid-infrared all-fiber gain-switched pulsed laser at 3 μm
,”
Opto-Electron. Adv.
3
,
190032
(
2020
).
8.
C.
Wei
,
L.
Zhou
,
D.
Wang
,
H.
Chi
,
H.
Huang
,
H.
Zhang
, and
Y.
Liu
, “
Mxene-Ti3C2Tx for Watt-level high-efficiency pulse generation in a 28 μm mid-infrared fiber laser
,”
Photonics Res.
8
,
972
(
2020
).
9.
H.
Huang
,
J.
Li
,
J.
Deng
,
Y.
Ge
,
H.
Liu
,
J.
Huang
,
W.
Weng
, and
W.
Lin
, “
Passively Q-switched Tm/Ho composite laser
,”
Opto-Electron. Adv.
3
,
190031
(
2020
).
10.
W.
Ma
,
D.
Zhao
,
R.
Liu
,
T.
Wang
,
Q.
Yuan
,
H.
Xiong
,
H.
Ji
, and
H.
Jiang
, “
Observation and optimization of 2 μm mode-locked pulses in all-fiber net anomalous dispersion laser cavity
,”
Opto-Electron. Adv.
3
,
200001
(
2020
).
11.
S.
Zlatanovic
,
J. S.
Park
,
S.
Moro
,
J. M. C.
Boggio
,
I. B.
Divliansky
,
N.
Alic
,
S.
Mookherjea
, and
S.
Radic
, “
Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source
,”
Nat. Photonics
4
,
561
564
(
2010
).
12.
C.
Yao
,
Z.
Jia
,
Z.
Li
,
S.
Jia
,
Z.
Zhao
,
L.
Zhang
,
Y.
Feng
,
G.
Qin
,
Y.
Ohishi
, and
W.
Qin
, “
High-power mid-infrared supercontinuum laser source using fluorotellurite fiber
,”
Optica
5
,
1264
1270
(
2018
).
13.
M.
Matsuura
,
O.
Raz
,
F.
Gomez-Agis
,
N.
Calabretta
, and
H. J. S.
Dorren
, “
Ultrahigh-speed and widely tunable wavelength conversion based on cross-gain modulation in a quantum-dot semiconductor optical amplifier
,”
Opt. Express
19
,
B551
B559
(
2011
).
14.
L.
Wang
,
M.
Gao
,
M.
Liu
,
H.
Zhu
,
B.
Chen
, and
L.
Xiang
, “
Energy-efficient all optical wavelength converter for optical phase conjugation
,”
Opt. Fiber Technol.
58
,
102278
(
2020
).
15.
S.
Singh
,
S.
Singh
,
Q. M.
Ngo
, and
A. M.
Mohammadi
, “
Analysis of all-optical wavelength converter based on FWM effect in HNLF for coherent 100 Gbps dual-polarized DQPSK signal
,”
Opt. Fiber Technol.
59
,
102323
(
2020
).
16.
M.
Mitchell
,
D. P.
Lake
, and
P. E.
Barclay
, “
Optomechanically amplified wavelength conversion in diamond microcavities
,”
Optica
6
,
832
838
(
2019
).
17.
Y.
Song
,
Y.
Chen
,
X.
Jiang
,
Y.
Ge
,
Y.
Wang
,
K.
You
,
K.
Wang
,
J.
Zheng
,
J.
Ji
,
Y.
Zhang
,
J.
Li
, and
H.
Zhang
, “
Nonlinear few-layer MXene-assisted all-optical wavelength conversion at telecommunication band
,”
Adv. Opt. Mater.
7
,
1801777
(
2019
).
18.
J.
Bohn
,
T. S.
Luk
,
C.
Tollerton
,
S. W.
Hutchings
,
I.
Brener
,
S.
Horsley
,
W. L.
Barnes
, and
E.
Hendry
, “
All-optical switching of an epsilon-near-zero plasmon resonance in indium tin oxide
,”
Nat. Commun.
12
,
1017
(
2021
).
19.
B.
Jiang
,
Z.
Hao
,
Y.
Ji
,
Y.
Hou
,
R.
Yi
,
D.
Mao
,
X.
Gan
, and
J.
Zhao
, “
High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe
,”
Light
9
,
63
(
2020
).
20.
L.
Du
,
X.
Ding
,
D.
Han
,
L.
Sui
,
Z.
Tao
,
W.
Ma
,
W.
Tianshu
,
W.
Tianshu
,
Y.
Wang
, and
Y.
Wang
, “
1.9 μm all-optical wavelength converter based on a graphene oxide coated microfiber
,”
Opt. Express
29
,
40286
40293
(
2021
).
21.
Y.
Wu
,
B. C.
Yao
,
Q. Y.
Feng
,
X. L.
Cao
,
X. Y.
Zhou
,
Y. J.
Rao
,
Y.
Gong
,
W. L.
Zhang
,
Z. G.
Wang
,
Y. F.
Chen
, and
K. S.
Chiang
, “
Generation of cascaded four-wave-mixing with graphene-coated microfiber
,”
Photonics Res.
3
,
A64
A68
(
2015
).
22.
J.
Zheng
,
Z.
Yang
,
S.
Chen
,
Z.
Liang
,
X.
Chen
,
R.
Cao
,
Z.
Guo
,
K.
Wang
,
Y.
Zhang
,
J.
Ji
,
M.
Zhang
, and
D.
Fan
, “
Black phosphorus based all-optical-signal-processing: Toward high performances and enhanced stability
,”
ACS Photonics
4
,
1466
1476
(
2017
).
23.
Y.
Song
,
Y.
Chen
,
X.
Jiang
,
W.
Liang
,
K.
Wang
,
Z.
Liang
,
Y.
Ge
,
F.
Zhang
,
L.
Wu
,
J.
Zheng
,
J.
Ji
, and
H.
Zhang
, “
Nonlinear few-layer antimonene-based all-optical signal processing: Ultrafast optical switching and high-speed wavelength conversion
,”
Adv. Opt. Mater.
6
,
1701287
(
2018
).
24.
L.
Wu
,
Z.
Xie
,
L.
Lu
,
J.
Zhao
,
Y.
Wang
,
X.
Jiang
,
Y.
Ge
,
F.
Zhang
,
S.
Lu
,
Z.
Guo
,
J.
Liu
,
Y.
Xiang
,
S.
Xu
,
J.
Li
,
D.
Fan
, and
H.
Zhang
, “
Few-layer tin sulfide: A promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion
,”
Adv. Opt. Mater.
6
,
1700985
(
2018
).
25.
J. T.
Hill
,
A. H.
Safavi-Naeini
,
J.
Chan
, and
O.
Painter
, “
Coherent optical wavelength conversion via cavity optomechanics
,”
Nat. Commun.
3
,
1196
(
2012
).
26.
J.-H.
Chen
,
B.-C.
Zheng
,
G.-H.
Shao
,
S.-J.
Ge
,
F.
Xu
, and
Y.-Q.
Lu
, “
An all-optical modulator based on a stereo graphene-microfiber structure
,”
Light
4
,
e360
(
2015
).
27.
W.
Eom
,
H.
Shin
,
R. B.
Ambade
,
S. H.
Lee
,
K. H.
Lee
,
D. J.
Kang
, and
T. H.
Han
, “
Large-scale wet-spinning of highly electroconductive MXene fibers
,”
Nat. Commun.
11
,
2825
(
2020
).
28.
A.
Autere
,
H.
Jussila
,
Y.
Dai
,
Y.
Wang
,
H.
Lipsanen
, and
Z.
Sun
, “
Nonlinear optics with 2D layered materials
,”
Adv. Mater.
30
,
1705963
(
2018
).
29.
J.
Li
,
Z.
Zhang
,
L.
Du
,
L.
Miao
,
J.
Yi
,
B.
Huang
,
Y.
Zou
,
C.
Zhao
, and
S.
Wen
, “
Highly stable femtosecond pulse generation from a MXene Ti3C2Tx (T = F, O, or OH) mode-locked fiber laser
,”
Photonics Res.
7
,
260
264
(
2019
).
30.
H.
Li
,
S.
Chen
,
D.
Boukhvalov
,
Z.
Yu
,
M.
Humphrey
,
Z.
Huang
, and
C.
Zhang
, “
Switching the nonlinear optical absorption of titanium carbide MXene by modulation of the surface terminations
,”
ACS Nano
16
,
394
404
(
2022
).
31.
T.
Jiang
,
K.
Yin
,
C.
Wang
,
J.
You
,
H.
Ouyang
,
R.
Miao
,
C.
Zhang
,
K.
Wei
,
H.
Li
,
H.
Chen
,
R.
Zhang
,
X.
Zheng
,
Z.
Xu
,
X.
Cheng
, and
H.
Zhang
, “
Ultrafast fiber lasers mode-locked by two-dimensional materials: Review and prospect
,”
Photonics Res.
8
,
78
90
(
2020
).
32.
H.
Yang
,
Y.
Wang
,
Z. C.
Tiu
,
S. J.
Tan
,
L.
Yuan
, and
H.
Zhang
, “
All-optical modulation technology based on 2D layered materials
,”
Micromachines
13
,
92
(
2022
).
33.
M.
Khazaei
,
M.
Arai
,
T.
Sasaki
,
M.
Estili
, and
Y.
Sakka
, “
Two-dimensional molybdenum carbides: Potential thermoelectric materials of the MXene family
,”
Phys. Chem. Chem. Phys.
16
,
7841
7849
(
2014
).
34.
Q.
Wu
,
Q.
Wu
,
Y.
Wang
,
W.
Huang
,
C.
Wang
,
Z.
Zheng
,
Z.
Zheng
,
M.
Zhang
, and
H.
Zhang
, “
Mxene-based high-performance all-optical modulators for actively Q-switched pulse generation
,”
Photonics Res.
8
,
1140
1147
(
2020
).
35.
L.
Wu
,
X.
Jiang
,
J.
Zhao
,
W.
Liang
,
Z.
Li
,
W.
Huang
,
Z.
Lin
,
Y.
Wang
,
F.
Zhang
,
S.
Lu
,
Y. J.
Xiang
,
S.
Xu
, and
J.
Li
, “
Mxene-based nonlinear optical information converter for all-optical modulator and switcher
,”
Laser Photonics Rev.
12
,
1800215
(
2018
).
36.
Z.
Wu
,
L.
Wei
,
S.
Tang
,
Y.
Xiong
,
X.
Qin
,
J.
Luo
,
J.
Fang
, and
X.
Wang
, “
Recent progress in Ti3C2Tx MXene-based flexible pressure sensors
,”
ACS Nano
15
,
18880
18894
(
2021
).
37.
X.
Xu
,
Y.
Zhang
,
H.
Sun
,
J.
Zhou
,
F.
Yang
,
H.
Li
,
H.
Chen
,
Y.
Chen
,
Z.
Liu
,
Z.
Qiu
,
D.
Wang
,
L.
Ma
,
J.
Wang
,
Q.
Zeng
, and
Z.
Peng
, “
Progress and perspective: MXene and MXene-based nanomaterials for high-performance energy storage devices
,”
Adv. Electron. Mater.
7
,
2000967
(
2021
).
38.
M.
Han
,
K.
Maleski
,
C.
Shuck
,
Y.
Yang
,
J.
Glazar
,
A.
Foucher
,
K.
Han tanasirisakul
,
A.
Sarycheva
,
N.
Frey
,
S.
May
,
V.
Shenoy
,
E.
Stach
, and
Y.
Gogotsi
, “
Tailoring electronic and optical properties of MXenes through forming solid solutions
,”
J. Am. Chem. Soc.
142
,
19110
19118
(
2020
).
39.
J.
Han
,
Y.
Huang
,
J.
Wu
,
Z.
Li
,
Y.
Yang
,
J.
Xiao
,
D.
Zhang
,
G.
Qin
, and
Y.
Huang
, “
10-GHz broadband optical frequency comb generation at 1550/1310 nm
,”
Opto-Electron. Adv.
3
,
190033
(
2020
).
40.
J.
Wang
,
Q.
Li
,
D.
Huang
,
C.
Liang
,
Y.
Chen
,
L.
Fang
,
Y.
Geng
,
X.
Hong
, and
X.
Li
, “
Design of graphene-on-germanium waveguide electro-optic modulators at the 2 μm wavelength
,”
OSA Continuum
2
,
749
758
(
2019
).
41.
R. H.
Stolen
and
J. E.
Bjorkholm
, “
Parametric amplification and frequency conversion in optical fibers
,”
IEEE J. Quantum Electron.
18
(
7
),
1062
(
1982
).
You do not currently have access to this content.