Wide-bandgap semiconductors are more advantageous for betavoltaic batteries due to their high conversion efficiency and strong radiation resistance. However, there has been little comprehensive analysis of how wide-bandgap semiconductors lead to efficiency improvements. In this work, we proposed a simulation model to predict the output performance of betavoltaic batteries based on 4H-SiC, hexagonal-GaN, and diamond, in which the Monte Carlo code and COMSOL Multiphysics software were combined. The energy deposition of a 63Ni source in semiconductors and the electrical characteristics of p–n junctions were investigated and compared. Our simulation results showed that the mass density and atomic number of semiconductor materials will cause the difference in energy deposition distribution, further leading to the different electron–hole pair generation rates. Then, the internal efficiency of batteries is co-determined by the energy band structure, depletion region width, built-in potential barrier, and minority carrier lifetime. The batteries based on wide-bandgap semiconductors can achieve the larger open-circuit voltage, further leading to higher efficiency. Additionally, to optimize the energy converter structure, the output parameters were calculated with a variation of doping concentrations and thicknesses of each region. Under the irradiation of a 63Ni source, the diamond-based battery with a p–n junction structure has the highest internal efficiency of 31.3%, while the GaN-based battery has the lowest one (16.8%), which can be attributed to the larger carrier recombination rate.

1.
L. C.
Olsen
,
P.
Cabauy
, and
B. J.
Elkind
, “
Betavoltaic power sources
,”
Phys. Today
65
(
12
),
35
38
(
2012
).
2.
M. A.
Prelas
,
C. L.
Weaver
,
M. L.
Watermann
,
E. D.
Lukosi
,
R. J.
Schott
, and
D. A.
Wisniewski
, “
A review of nuclear batteries
,”
Prog. Nucl. Energy
75
,
117
148
(
2014
).
3.
G.
Lioliou
,
A. B.
Krysa
, and
A. M.
Barnett
, “
Wide bandgap semiconductor conversion devices for radioisotope microbatteries
,”
Mater. Sci. Semicond. Process.
142
,
106533
(
2022
).
4.
M. G.
Spencer
and
T.
Alam
, “
High power direct energy conversion by nuclear batteries
,”
Appl. Phys. Rev.
6
,
031305
(
2019
).
5.
M. A.
Prelas
,
M.
Boraas
,
F. D.
Aguilar
,
J. D.
Seelig
,
M. T.
Tchouaso
, and
D.
Wisniewski
,
Nuclear Batteries and Radioisotopes, Lecture Notes in Energy
(
Springer Press
,
2016
), Vol.
56
.
6.
C.
Zhao
,
F. Y.
Liao
,
K. Z.
Liu
, and
Y. Y.
Zhao
, “
Breaking the myth: Wide-bandgap semiconductors not always the best for betavoltaic batteries
,”
Appl. Phys. Lett.
119
,
153904
(
2021
).
7.
P.
Rappaport
, “
The electron-voltaic effect in p–n junctions induced by beta-particle bombardment
,”
Phys. Rev.
93
(
1
),
246
(
1954
).
8.
L. C.
Olsen
, “
Betavoltaic energy conversion
,”
Energy Convers.
13
(
4
),
117
127
(
1973
).
9.
K. E.
Bower
,
Y. A.
Barbanel
,
Y. G.
Shreter
, and
G. W.
Bohnert
,
Polymers, Phosphors and Voltaics for Radioisotope Microbatteries
(
CRC Press
,
Boca Raton, FL
,
2002
).
10.
M. V. S.
Chandrashekhar
,
C. I.
Thomas
,
H.
Li
,
M. G.
Spencer
, and
A.
Lal
, “
Demonstration of a 4H SiC betavoltaic cell
,”
Appl. Phys. Lett.
88
,
033506
(
2006
).
11.
D.-Y.
Qiao
,
X.-J.
Chen
,
Y.
Ren
, and
W.-Z.
Yuan
, “
A micro nuclear battery based on SiC Schottky barrier diode
,”
J. Microelectromech. Syst.
20
(
3
),
685
690
(
2011
).
12.
Z.-J.
Cheng
,
H.-S.
San
,
X.-Y.
Chen
,
B.
Liu
, and
Z.-H.
Feng
, “
Demonstration of a high open-circuit voltage GaN betavoltaic microbattery
,”
Chin. Phys. Lett.
28
(
7
),
078401
(
2011
).
13.
M.
Lu
,
G-g
Zhang
,
K.
Fu
,
G-h
Yu
,
D.
Su
, and
J-f
Hu
, “
Gallium nitride Schottky betavoltaic nuclear batteries
,”
Energy Convers. Manage.
52
(
4
),
1955
1958
(
2011
).
14.
V.
Bormashov
,
S.
Troschiev
,
A.
Volkov
,
S.
Tarelkin
,
E.
Korostylev
,
A.
Golovanov
,
M.
Kuznetsov
,
D.
Teteruk
,
N.
Kornilov
,
S.
Terentiev
,
S.
Buga
, and
V.
Blank
, “
Development of nuclear microbattery prototype based on Schottky barrier diamond diodes
,”
Phys. Status Solidi A
212
(
11
),
2539
2547
(
2015
).
15.
Y.-M.
Liu
,
J.-B.
Lu
,
X.-Y.
Li
,
X.
Xu
,
R.
He
,
R.-Z.
Zheng
, and
G.-D.
Wei
, “
Theoretical prediction of diamond betavoltaic batteries performance using 63Ni
,”
Chin. Phys. Lett.
35
,
072301
(
2018
).
16.
C.
Zhao
,
A.
Liu
,
S.
Bai
, and
Y. Y.
Zhao
, “
Understanding efficiency differences of betavoltaic batteries measured by electron gun mimicked source and radioactive β source
,”
Appl. Phys. Lett.
117
,
193901
(
2020
).
17.
T.
Heuser
,
M.
Braun
,
P.
Mclntyre
, and
D. G.
Senesky
, “
Electron beam irradiation of gallium nitride-on-silicon betavoltaics fabricated with a triple mesa etch
,”
J. Appl. Phys.
130
,
174503
(
2021
).
18.
T.
Shimaoka
,
H.
Umezawa
,
K.
Ichikawa
,
J.
Pernot
, and
S.
Koizumi
, “
Ultrahigh conversion efficiency of betavoltaic cell using diamond pn junction
,”
Appl. Phys. Lett.
117
,
103902
(
2020
).
19.
S.
Maximenko
,
J.
Moore
,
C.
Affouda
, and
P.
Jenkins
, “
Optimal semiconductors for 3H and 63Ni betavoltaics
,”
Sci. Rep.
9
,
10892
(
2019
).
20.
C. A.
Klein
, “
Bandgap dependence and related features of radiation ionization energies in semiconductors
,”
J. Appl. Phys.
39
,
2029
2038
(
1968
).
21.
Y.-P.
Liu
,
X.-B.
Tang
,
Z.-H.
Xu
,
L.
Hong
,
H.
Wang
,
M.
Liu
, and
D.
Chen
, “
Influences of planar source thickness on betavoltaics with different semiconductors
,”
J. Radioanal. Nucl. Chem.
304
,
517
525
(
2015
).
22.
T. R.
Alam
,
M. A.
Pierson
, and
M. A.
Prelas
, “
Beta particle transport and its impact on betavoltaic battery modeling
,”
Appl. Radiat. Isot.
130
,
80
(
2017
).
23.
G.
Lioliou
and
A. M.
Barnett
, “
Electron–hole pair creation and conversion efficiency in radioisotope microbatteries
,”
Appl. Radiat. Isot.
180
,
110042
(
2022
).
24.
X.
Li
,
N. P.
Hylton
,
V.
Giannini
,
K.-H.
Lee
,
N. J.
Ekins-Daukes
, and
S. A.
Maier
, “
Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations
,”
Prog. Photovoltaics: Res. Appl.
21
,
109
120
(
2013
).
25.
N.
Bednar
,
N.
Severino
, and
N.
Adamovic
, “
Optical simulation of light management in CIGS thin-film solar cells using finite element method
,”
Appl. Sci.
5
,
1735
1744
(
2015
).
26.
D. A.
Neamen
,
Semiconductor Physics and Devices: Basic Principles
, 4th ed. (
Publishing House of Electronics Industry; McGraw-Hill Education
,
Xi'an
,
2017
), pp.
248
630
.
27.
F. G.
Della Corte
,
G.
De Martino
,
F.
Pezzimenti
,
G.
Adinolfi
, and
G.
Graditi
, “
Numerical simulation study of a low breakdown voltage 4H-SiC MOSFET for photovoltaic module-level applications
,”
IEEE Trans. Electron Devices
65
(
8
),
3352
3360
(
2018
).
28.
F.
Bouzid
,
F.
Pezzimenti
, and
L.
Dehimi
, “
Modelling and performance analysis of a GaN-based n/p junction betavoltaic cell
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
969
,
164103
(
2020
).
29.
N.
Sanders
and
E.
Kioupakis
, “
Phonon- and defect-limited electron and hole mobility of diamond and cubic boron nitride: A critical comparison
,”
Appl. Phys. Lett.
119
,
062101
(
2021
).
30.
P.
Scajev
,
V.
Gudelis
,
A.
Tallaire
,
J.
Barjon
, and
K.
Jarasiunas
, “
Injection and temperature dependent carrier recombination rate and diffusion length in freestanding CVD diamond
,”
Phys. Status Solidi A
210
(
10
),
2016
2021
(
2013
).
31.
T. R.
Alam
,
M. A.
Pierson
, and
M. A.
Prelas
, “
Design principles of narrow and wide bandgap-based betavoltaic batteries
,”
IEEE Trans. Electron Devices
65
(
12
),
5518
(
2018
).
You do not currently have access to this content.