A Cu–carbon hybrid interconnect was recently proposed as an alternate interconnect structure for future VLSI applications because of its superior electrical performance over its counterparts. This study focuses on the electro-thermal aspects of Cu–carbon hybrid interconnects to be adopted as a potential replacement of copper as the back-end-of-line (BEOL) interconnect material. Cu–carbon hybrid shows promise in terms of electro-thermal efficiency when compared to copper as well as other suggested hybrid materials. The maximum temperature attained by the Cu–carbon hybrid interconnect is less than copper by 16%, and its mean time to failure is improved by 96%. Uniform distribution of heat can be observed in the Cu–carbon hybrid BEOL in addition to low temperature rise as compared to the copper based BEOL. These analyses strengthen the claim of Cu–carbon hybrid interconnects to be a worthier possibility for electro-thermal efficient nanoscale systems.

1.
See https://irds.ieee.org/editions/2017
International Roadmap for Devices and Systems (IRDS-2017) Reports
.”
2.
E.
Pop
, “
Energy dissipation and transport in nanoscale devices
,”
Nano Res.
3
,
147
169
(
2010
).
3.
E.
Pop
,
S.
Sinha
, and
K.
Goodson
, “
Heat generation and transport in nanometer-scale transistors
,”
Proc. IEEE
94
,
1587
1601
(
2006
).
4.
M.
Sahoo
and
H.
Rahaman
, “
Analysis of crosstalk-induced effects in multilayer graphene nanoribbon interconnects
,”
J. Circuits, Syst. Comput.
26
,
1750102
(
2017
).
5.
S.
Im
,
N.
Srivastava
,
K.
Banerjee
, and
K.
Goodson
, “
Scaling analysis of multilevel interconnect temperatures for high-performance ICs
,”
IEEE Trans. Electron Devices
52
,
2710
2719
(
2005
).
6.
H.
Li
,
C.
Xu
,
N.
Srivastava
, and
K.
Banerjee
, “
Carbon nanomaterials for next-generation interconnects and passives: Physics, status, and prospects
,”
IEEE Trans. Electron Devices
56
,
1799
1821
(
2009
).
7.
K. M.
Liew
,
C. H.
Wong
,
X. Q.
He
, and
M. J.
Tan
, “
Thermal stability of single and multi-walled carbon nanotubes
,”
Phys. Rev. B
71
,
075424
(
2005
).
8.
M.
Sahoo
,
P.
Ghosal
, and
H.
Rahaman
, “
An ABCD parameter based modeling and analysis of crosstalk induced effects in multiwalled carbon nanotube bundle interconnects
,” in
2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems
(IEEE,
2014
), pp.
433
438
.
9.
M.
Sahoo
and
H.
Rahaman
, “
An ABCD parameter based modeling and analysis of crosstalk induced effects in multilayer graphene nano ribbon interconnects
,” in
2014 IEEE International Symposium on Circuits and Systems (ISCAS)
(
IEEE
,
2014
), pp.
1138
1142
.
10.
A.
Singh
,
T.
Ram Prabhu
,
A.
Sanjay
, and
V.
Koti
, “
An overview of processing and properties of Cu/CNT nano composites
,” in
5th International Conference of Materials Processing and Characterization ICMPC (2016)
[
Mater. Today
4
,
3872
3881
(
2017
)].
11.
J.
Lee
,
S.
Berrada
,
F.
Adamu-Lema
,
N.
Nagy
,
V. P.
Georgiev
,
T.
Sadi
,
J.
Liang
,
R.
Ramos
,
H.
Carrillo-Nunez
,
D.
Kalita
,
K.
Lilienthal
,
M.
Wislicenus
,
R.
Pandey
,
B.
Chen
,
K. B. K.
Teo
,
G.
Goncalves
,
H.
Okuno
,
B.
Uhlig
,
A.
Todri-Sanial
,
J.
Dijon
, and
A.
Asenov
, “
Understanding electromigration in Cu-CNT composite interconnects: A multiscale electrothermal simulation study
,”
IEEE Trans. Electron Devices
65
,
3884
3892
(
2018
).
12.
Z.-H.
Cheng
,
W.-S.
Zhao
,
D.-W.
Wang
,
J.
Wang
,
L.
Dong
,
G.
Wang
, and
W.-Y.
Yin
, “
Analysis of Cu-graphene interconnects
,”
IEEE Access
6
,
53499
53508
(
2018
).
13.
R.
Zhang
,
W.-S.
Zhao
,
J.
Hu
, and
W.-Y.
Yin
, “
Electrothermal characterization of multilevel cu-graphene heterogeneous interconnects in the presence of an electrostatic discharge (ESD)
,”
IEEE Trans. Nanotechnol.
14
,
205
209
(
2015
).
14.
B.
Kumari
,
R.
Kumar
,
R.
Sharma
, and
M.
Sahoo
, “
Design, modeling and analysis of Cu-carbon hybrid interconnects
,”
IEEE Access
9
,
113577
113584
(
2021
).
15.
M.
Park
,
D.-M.
Lee
,
M.
Park
,
S.
Park
,
D. S.
Lee
,
T.-W.
Kim
,
S. H.
Lee
,
S.-K.
Lee
,
H. S.
Jeong
,
B. H.
Hong
, and
S.
Bae
, “
Performance enhancement of graphene assisted CNT/Cu composites for lightweight electrical cables
,”
Carbon
179
,
53
59
(
2021
).
16.
B.
Vaisband
,
A.
Maurice
,
C. W.
Tan
,
B. K.
Tay
, and
E. G.
Friedman
, “
Electrical and thermal models of CNT TSV and graphite interface
,”
IEEE Trans. Electron Devices
65
,
1880
1886
(
2018
).
17.
Z.-H.
Cheng
,
W.-S.
Zhao
,
L.
Dong
,
J.
Wang
,
P.
Zhao
,
H.
Gao
, and
G.
Wang
, “
Investigation of copper–carbon nanotube composites as global VLSI interconnects
,”
IEEE Trans. Nanotechnol.
16
,
891
900
(
2017
).
18.
R.
Kumar
,
A.
Kumar
,
S.
Guglani
,
S.
Kumar
,
S.
Roy
,
B. K.
Kaushik
,
R.
Sharma
, and
R.
Achar
, “
A temperature and dielectric roughness-aware matrix rational approximation model for the reliability assessment of copper–graphene hybrid on-chip interconnects
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
10
,
1454
1465
(
2020
).
19.
S.
Kumar
and
R.
Sharma
, “
Analytical model for resistivity and mean free path in on-chip interconnects with rough surfaces
,”
IEEE Trans. Emerging Top. Comput.
6
,
233
243
(
2018
).
20.
S.
Datta
,
Quantum Transport: Atom to Transistor
(
Cambridge University Press
,
2005
)
21.
M.
Sahoo
,
P.
Ghosal
, and
H.
Rahaman
, “
Modeling and analysis of crosstalk induced effects in multiwalled carbon nanotube bundle interconnects: An ABCD parameter-based approach
,”
IEEE Trans. Nanotechnol.
14
,
259
274
(
2015
).
22.
N.
Li
,
J.
Mao
,
W.-S.
Zhao
,
M.
Tang
,
W.
Chen
, and
W.-Y.
Yin
, “
Electrothermal cosimulation of 3-D carbon-based heterogeneous interconnects
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
6
,
518
526
(
2016
).
23.
W.
Ahn
,
H.
Zhang
,
T.
Shen
,
C.
Christiansen
,
P.
Justison
,
S.
Shin
, and
M. A.
Alam
, “
A predictive model for IC self-heating based on effective medium and image charge theories and its implications for interconnect and transistor reliability
,”
IEEE Trans. Electron Devices
64
,
3555
3562
(
2017
).
24.
J.
Black
, “
Electromigration—A brief survey and some recent results
,”
IEEE Trans. Electron Devices
16
,
338
347
(
1969
).

Supplementary Material

You do not currently have access to this content.