Metamaterials exploit sub-wavelength microstructures to yield novel macroscopic material properties. Recently, the notion of a metacluster has emerged, which is a collection of resonators that interact in order to modify and possibly enhance the resonance. They can also be employed to modify and tune the far-field scattered response. This is particularly important with regard to metamaterial design. In the context of elastodynamics, Cotterill et al. [Proc. R. Soc. A 478(2263), 20220026 (2022)] considered the case of void metaclusters, thus permitting the modification of the so-called giant monopole resonance in elastodynamics. Here, we consider one of the original resonant configurations of metamaterial science in Liu et al. [Science 289, 1734 (2000)]; this structure consists of coated cylinders of circular cross section and gives rise to a strong dipole resonance for sufficiently soft coatings. We consider the nature of the interaction of two such identical resonators in close proximity, which we term the co-dipole metacluster. We show that, contrary to the giant monopole case, the frequency at which the resonance occurs is unchanged as compared to a single resonator. The amplitude of the resonance itself is enhanced significantly, however, by up to 5.7 times the enhancement observed when considering two non-interacting resonators. Furthermore, although the nature of the resonance remains dominated by a dipole response, both the enhancement and the far-field scattered response are now significantly affected by the incidence angle, in contrast to the single resonator.

1.
P.
Cotterill
,
D.
Nigro
, and
W.
Parnell
,
Proc. R. Soc. A
478
(2263),
20220026
(
2022
).
2.
Z.
Liu
,
X.
Zhang
,
Y.
Mao
,
Y.
Zhu
,
Z.
Yang
,
C. T.
Chan
, and
P.
Sheng
,
Science
289
,
1734
(
2000
).
3.
X.
Zhou
,
X.
Liu
, and
G.
Hu
,
Theor. Appl. Mech. Lett.
2
,
041001
(
2012
).
4.
Acoustic Metamaterials
, edited by
R. V.
Craster
and
S.
Guenneau
(
Springer
,
Netherlands
,
2013
).
5.
P.
Packo
,
A. N.
Norris
, and
D.
Torrent
,
Phys. Rev. Appl.
15
,
014051
(
2021
).
6.
C.
Goffaux
and
J.
Sánchez-Dehesa
,
Phys. Rev. B
67
,
144301
(
2003
).
7.
G.
Bonnet
and
V.
Monchiet
,
J. Acoust. Soc. Am.
137
,
3263
(
2015
).
8.
C.
Comi
,
M.
Moscatelli
, and
J.-J.
Marigo
,
Mater. Phys. Mech.
44
,
8
(
2020
).
9.
Z.
Liu
,
C. T.
Chan
, and
P.
Sheng
,
Phys. Rev. B
65
,
165116
(
2002
).
10.
Z.
Liu
,
C. T.
Chan
, and
P.
Sheng
,
Phys. Rev. B
71
,
014103
(
2005
).
11.
K. H.
Fung
,
Z.
Liu
, and
C. T.
Chan
,
Z. Kristallogr.
220
,
871
(
2005
).
12.
H.
Huang
,
C.
Sun
, and
G.
Huang
,
Int. J. Eng. Sci.
47
,
610
(
2009
).
13.
P. C.
Waterman
,
J. Acoust. Soc. Am.
60
,
567
(
1976
).
14.
T.
Still
,
M.
Oudich
,
G. K.
Auerhammer
,
D.
Vlassopoulos
,
B.
Djafari-Rouhani
,
G.
Fytas
, and
P.
Sheng
,
Phys. Rev. B
88
,
094102
(
2013
).
15.
P. J.
Barratt
and
W. D.
Collins
,
Math. Proc. Cambridge Philos. Soc.
61
,
969
(
1965
).
16.
P. A.
Martin
,
Multiple Scattering
(
Cambridge University Press
,
2006
).
17.
K. M.
Ho
,
C. K.
Cheng
,
Z.
Yang
,
X. X.
Zhang
, and
P.
Sheng
,
Appl. Phys. Lett.
83
,
5566
(
2003
).
You do not currently have access to this content.