Photonic topological insulators have recently received widespread attention mainly due to their ability to provide directions in the development of photonic integration platforms. The proposal for a topological bulk cavity with a single-mode expands upon previous research works on topological cavities; thus, interest in topological edge states and corner states is beginning to shift into analysis on bulk properties and their applications. However, there remains a gap in research on a multi-mode cavity of the topological photonic crystals (PCs). In this Letter, a cavity of the topological PCs is proposed involving pair-partitioned bulk localized states (BLSs) from a two-dimensional inner and outer nested square lattice (2D IONSL), which can enable a multi-mode cavity for the topological PCs. First, the topological characteristics are described in terms of a Zak phase, and band inversions are achieved by changing the size of scatterers in the inner and outer circles that reside within the unit cell. Afterwards, analogous to the tight-binding model for electronic systems, the Hamiltonian and topological phase transition conditions of 2D IONSL PCs are derived. Furthermore, it is proposed that the demonstrated optical field reflection and confinement mechanism induced by topological band inversions due to the opposite parities of wavefunctions may lead to the phenomenon of pair-partitioned BLSs. This research increases the research works of bulk topological effects, creating a route for photonic integration platforms for near-infrared.

1.
B.
Xie
,
H.
Wang
,
X.
Zhu
,
M.
Lu
,
Z. D.
Wang
, and
Y.
Chen
, “
Photonics meets topology
,”
Opt. Express
26
(
19
),
24531
24550
(
2018
).
2.
T.
Ozawa
,
H. M.
Price
,
A.
Amo
,
N.
Goldman
,
M.
Hafezi
,
L.
Lu
,
M. C.
Rechtsman
,
D.
Schuster
,
J.
Simon
,
O.
Zilberberg
, and
I.
Carusotto
, “
Topological photonics
,”
Rev. Mod. Phys.
91
(
1
),
015006
(
2019
).
3.
M.
Jung
,
R. G.
Gladstone
, and
G. B.
Shvets
, “
Nanopolaritonic second-order topological insulator based on graphene plasmons
,”
Adv. Photonics
2
(
4
),
046003
(
2020
).
4.
X.
Chen
,
W.
Deng
,
F.
Shi
,
F.
Zhao
,
M.
Chen
, and
J.
Dong
, “
Direct observation of corner states in second-order topological photonic crystal slabs
,”
Phys. Rev. Lett.
122
(
23
),
233902
(
2019
).
5.
B.
Xie
,
G.
Su
,
H.
Wang
,
H.
Su
,
X.
Shen
,
P.
Zhan
,
M.
Lu
,
Z.
Wang
, and
Y.
Chen
, “
Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals
,”
Phys. Rev. Lett.
122
(
23
),
233903
(
2019
).
6.
M.
Serra-Garcia
,
V.
Peri
,
R.
Süsstrunk
,
O. R.
Bilal
,
T.
Larsen
,
L. G.
Villanueva
, and
S. D.
Huber
, “
Observation of a phononic quadrupole topological insulator
,”
Nature
555
(
7696
),
342
345
(
2018
).
7.
Z.
Zhang
,
M.
Rosendo López
,
Y.
Cheng
,
X.
Liu
, and
J.
Christensen
, “
Non-Hermitian sonic second-order topological insulator
,”
Phys. Rev. Lett.
122
(
19
),
195501
(
2019
).
8.
T.
Liu
,
Y. R.
Zhang
,
Q.
Ai
,
Z.
Gong
,
K.
Kawabata
,
M.
Ueda
, and
F.
Nori
, “
Second-order topological phases in non-Hermitian systems
,”
Phys. Rev. Lett.
122
(
7
),
076801
(
2019
).
9.
B.
Yan
,
J.
Xie
,
E.
Liu
,
Y.
Peng
,
R.
Ge
,
J.
Liu
, and
S.
Wen
, “
Topological edge state in the two-dimensional Stampfli-triangle photonic
,”
Phys. Rev. Appl.
12
(
4
),
044004
(
2019
).
10.
Y.
Peng
,
B.
Yan
,
J.
Xie
,
E.
Liu
,
H.
Li
,
R.
Ge
,
F.
Gao
, and
J.
Liu
, “
Variation of topological edge states of 2D honeycomb lattice photonic crystals
,”
Phys. Status Solidi RRL
14
(
9
),
2000202
(
2020
).
11.
M. C.
Rechtsman
,
J. M.
Zeuner
,
Y.
Plotnik
,
Y.
Lumer
,
D.
Podolsky
,
F.
Dreisow
,
S.
Nolte
,
M.
Segev
, and
A.
Szameit
, “
Photonic Floquet topological insulators
,”
Nature
496
(
7444
),
196
200
(
2013
).
12.
A. B.
Khanikaev
,
S.
Hossein Mousavi
,
W. K.
Tse
,
M.
Kargarian
,
A. H.
MacDonald
, and
G.
Shvets
, “
Photonic topological insulators
,”
Nat. Mater.
12
(
3
),
233
239
(
2013
).
13.
W.
Gao
,
B.
Yang
,
B.
Tremain
,
H.
Liu
,
Q.
Guo
,
L.
Xia
,
A. P.
Hibbins
, and
S.
Zhang
, “
Experimental observation of photonic nodal line degeneracies in metacrystals
,”
Nat. Commun.
9
(
1
),
950
(
2018
).
14.
Q.
Yan
,
R.
Liu
,
Z.
Yan
,
B.
Liu
,
H.
Chen
,
Z.
Wang
, and
L.
Lu
, “
Experimental discovery of nodal chains
,”
Nat. Phys.
14
(
5
),
461
464
(
2018
).
15.
D. D.
Solnyshkov
,
O.
Bleu
, and
G.
Malpuech
, “
Topological optical isolator based on polariton graphene
,”
Appl. Phys. Lett.
112
(
3
),
031106
(
2018
).
16.
M. P.
Makwana
and
G.
Chaplain
, “
Tunable three-way topological energy-splitter
,”
Sci. Rep.
9
(
1
),
18939
(
2019
).
17.
W.
Song
,
W.
Sun
,
C.
Chen
,
Q.
Song
,
S.
Xiao
,
S.
Zhu
, and
T.
Li
, “
Robust and broadband optical coupling by topological waveguide arrays
,”
Laser Photonics Rev.
14
(
2
),
1900193
(
2020
).
18.
X.
Yin
,
J.
Jin
,
M.
Soljačić
,
C.
Peng
, and
B.
Zhen
, “
Observation of topologically enabled unidirectional guided resonances
,”
Nature
580
(
7804
),
467
471
(
2020
).
19.
M.
Ezawa
, “
Higher-order topological insulators and semimetals on the breathing kagome and pyrochlore lattices
,”
Phys. Rev. Lett.
120
(
2
),
026801
(
2018
).
20.
B.
Xie
,
H.
Wang
,
H.
Wang
,
X.
Zhu
,
J.
Jiang
,
M.
Lu
, and
Y.
Chen
, “
Second-order photonic topological insulator with corner states
,”
Phys. Rev. B
98
(
20
),
205147
(
2018
).
21.
H.
Hu
,
B.
Huang
,
E.
Zhao
, and
W. V.
Liu
, “
Dynamical singularities of Floquet higher-order topological insulators
,”
Phys. Rev. Lett.
124
(
5
),
057001
(
2020
).
22.
C. W.
Peterson
,
T.
Li
,
W. A.
Benalcazar
,
T. L.
Hughes
, and
G.
Bahl
, “
A fractional corner anomaly reveals higher-order topology
,”
Science
368
(
6495
),
1114
1118
(
2020
).
23.
W.
Zhang
,
X.
Xie
,
H.
Hao
,
J.
Dang
,
S.
Xiao
,
S.
Shi
,
H.
Ni
, and
Z.
Niu
, “
Low-threshold topological nanolasers based on the second-order corner state
,”
Light Sci. Appl.
9
(
1
),
109
(
2020
).
24.
M.
Li
,
D.
Zhirihin
,
M.
Gorlach
,
X.
Ni
,
D.
Filonov
,
A.
Slobozhanyuk
,
A.
Alù
, and
A. B.
Khanikaev
, “
Higher-order topological states in photonic kagome crystals with long-range interactions
,”
Nat. Photonics
14
(
2
),
89
94
(
2020
).
25.
H. R.
Kim
,
M. S.
Hwang
,
D.
Smirnova
,
K. Y.
Jeong
,
Y.
Kivshar
, and
H. G.
Park
, “
Multipolar lasing modes from topological corner states
,”
Nat. Commun.
11
(
1
),
5758
(
2020
).
26.
B.
Xie
,
G.
Su
,
H. F.
Wang
,
F.
Liu
,
L.
Hu
,
S. Y.
Yu
,
P.
Zhan
,
M. H.
Lu
,
Z.
Wang
, and
Y. F.
Chen
, “
Higher-order quantum spin Hall effect in a photonic crystal
,”
Nat. Commun.
11
(
1
),
3768
(
2020
).
27.
M.
Kim
and
J.
Rho
, “
Topological edge and corner states in a two-dimensional photonic Su–Schrieffer–Heeger lattice
,”
Nanophotonics
9
(
10
),
3227
3234
(
2020
).
28.
B.
Xie
,
H. X.
Wang
,
X.
Zhang
,
P.
Zhan
,
J. H.
Jiang
,
M.
Lu
, and
Y.
Chen
, “
Higher-order band topology
,”
Nat. Rev. Phys.
3
(
7
),
520
532
(
2021
).
29.
J.
Noh
,
W. A.
Benalcazar
,
S.
Huang
,
M. J.
Collins
,
K. P.
Chen
,
T. L.
Hughes
, and
M. C.
Rechtsman
, “
Topological protection of photonic mid-gap defect modes
,”
Nat. Photonics
12
(
7
),
408
415
(
2018
).
30.
F. F.
Li
,
H. X.
Wang
,
Z.
Xiong
,
Q.
Lou
,
P.
Chen
,
R. X.
Wu
,
Y.
Poo
,
J. H.
Jiang
, and
S.
John
, “
Topological light-trapping on a dislocation
,”
Nat. Commun.
9
(
1
),
2462
(
2018
).
31.
X.
Xie
,
W.
Zhang
,
X.
He
,
S.
Wu
,
J.
Dang
,
K.
Peng
,
F.
Song
,
L.
Yang
,
H.
Ni
,
Z.
Niu
,
C.
Wang
,
K.
Jin
,
X.
Zhang
, and
X.
Xu
, “
Cavity quantum electrodynamics with second-order topological corner state
,”
Laser Photonics Rev.
14
(
8
),
1900425
(
2020
).
32.
D.
Smirnova
,
A.
Tripathi
,
S.
Kruk
,
M. S.
Hwang
,
H. R.
Kim
,
H. G.
Park
, and
Y.
Kivshar
, “
Room-temperature lasing from nanophotonic topological cavities
,”
Light: Sci. Appl.
9
(
1
),
127
(
2020
).
33.
X.
Xie
,
S.
Yan
,
J.
Dang
,
J.
Yang
,
S.
Xiao
,
Y.
Wang
,
S.
Shi
,
L.
Yang
,
D.
Dai
,
Y.
Yuan
,
N.
Luo
,
T.
Cui
,
G.
Chi
,
Z.
Zuo
,
B. B.
Li
,
C.
Wang
, and
X.
Xu
, “
Topological cavity based on slow-light topological edge mode for broadband Purcell enhancement
,”
Phys. Rev. Appl.
16
(
1
),
014036
(
2021
).
34.
A.
Shi
,
B.
Yan
,
R.
Ge
,
J.
Xie
,
Y.
Peng
,
H.
Li
,
W. E. I.
Sha
, and
J.
Liu
, “
Coupled cavity-waveguide based on topological corner state and edge state
,”
Opt. Lett.
46
(
5
),
1089
1092
(
2021
).
35.
Z.
Shao
,
H.
Chen
,
S.
Wang
,
X.
Mao
,
Z.
Yang
,
S.
Wang
,
X.
Wang
,
X.
Hu
, and
R.
Ma
, “
A high-performance topological bulk laser based on band-inversion-induced reflection
,”
Nat. Nanotechnol.
15
(
1
),
67
72
(
2020
).
36.
D.
Mahgerefteh
and
C.
Thompson
, “
Techno-economic comparison of silicon photonics and multimode VCSELs
,”
J. Lightwave Technol.
34
(
2
),
233
242
(
2016
).
37.
H.
Lin
,
S.
Ourari
,
T.
Huang
,
A.
Jha
,
A.
Briggs
, and
N.
Bigagli
, “
Photonic microwave generation in multimode VCSELs subject to orthogonal optical injection
,”
J. Opt. Soc. Am. B
34
(
11
),
2381
2389
(
2017
).
38.
W.
Yang
,
G.
Xia
,
E.
Jayaprasath
,
Z.
Jiang
,
Y.
Hou
,
C.
Hu
, and
Z.
Wu
, “
Experimental investigation on the nonlinear dynamics of two mutually coupled 1550 nm multi-transverse-mode vertical-cavity surface-emitting lasers
,”
Appl. Opt.
58
(
5
),
1271
1275
(
2019
).
39.
D.
Obana
,
F.
Liu
, and
K.
Wakabayashi
, “
Topological edge states in the Su–Schrieffer–Heeger model
,”
Phys. Rev. B
100
(
7
),
075437
(
2019
).
40.
B.
Yan
,
Y.
Peng
,
A.
Shi
,
J.
Xie
,
P.
Peng
, and
J.
Liu
, “
Pseudo-spin-valley coupled topological states protected by different symmetries in photonic crystals
,”
Opt. Lett.
47
(
8
),
2044
2047
(
2022
).
41.
J.
Jiang
,
B.
Yan
,
Y.
Peng
,
J.
Xie
,
A.
Shi
, and
J.
Liu
, “
Multiband topological states in non-Hermitian photonic crystals
,”
Opt. Lett.
47
(
2
),
437
440
(
2022
).
42.
C.
Lu
,
C.
Wang
,
M.
Xiao
,
Z. Q.
Zhang
, and
C. T.
Chan
, “
Topological rainbow concentrator based on synthetic dimension
,”
Phys. Rev. Lett.
126
(
11
),
113902
(
2021
).
43.
M. L. N.
Chen
,
L. J.
Jiang
,
Z.
Lan
, and
W. E. I.
Sha
, “
Pseudospin-polarized topological line defects in dielectric photonic crystals
,”
IEEE Trans. Antennas Propag.
68
(
1
),
609
613
(
2020
).
44.
Y.
Wei
,
B.
Yan
,
Y.
Peng
,
A.
Shi
,
D.
Zhao
,
R.
Peng
,
Y.
Xiang
, and
J.
Liu
, “
Fragile topology in double-site honeycomb lattice photonic crystal
,”
Opt. Lett.
46
(
16
),
3941
3944
(
2021
).
45.
Z.
Zhang
,
H.
Long
,
C.
Liu
,
C.
Shao
,
Y.
Cheng
,
X.
Liu
, and
J.
Christensen
, “
Deep-subwavelength holey acoustic second-order topological insulators
,”
Adv. Mater.
31
(
49
),
1904682
(
2019
).
46.
C.
Fang
,
M. J.
Gilbert
, and
B. A.
Bernevig
, “
Bulk topological invariants in noninteracting point group symmetric insulators
,”
Phys. Rev. B
86
(
11
),
115112
(
2012
).
47.
J. M.
Lourtioz
,
H.
Benisty
,
V.
Berger
,
J. M.
Gérard
,
D.
Maystre
, and
A.
Tchelnokov
,
Photonic Crystals: Towards Nanoscale Photonic Devices
(
Springer-Verlag
,
Berlin
,
2008
), pp.
59
77
.
48.
I. A.
Sukhoivanov
and
I. V.
Guryev
,
Photonic Crystals: Physics and Practical Modeling
(
Springer-Verlag
,
Berlin
,
2009
), pp.
96
103
.
49.
L.
Xu
,
H.
Wang
,
Y.
Xu
,
H.
Chen
, and
J.
Jiang
, “
Accidental degeneracy in photonic bands and topological phase transitions in two-dimensional core-shell dielectric photonic crystals
,”
Opt. Express
24
(
16
),
18059
18071
(
2016
).
50.
H. X.
Wang
,
L.
Liang
,
B.
Jiang
,
J.
Hu
,
X.
Lu
, and
J. H.
Jiang
, “
Higher-order topological phases in tunable C3 symmetric photonic crystals
,”
Photonics Res.
9
(
9
),
1854
1864
(
2021
).
You do not currently have access to this content.