Polishing techniques have been used since antiquity but remain important in high-value manufacturing processes in optics and semiconductor fields. State-of-the-art polishing enables the production of atomically flat surfaces of even advanced materials, such as diamond, SiC, and GaN, by exploiting the exceptional chemical characteristics of particle surfaces, fluid solutions, and pad surfaces. Although various effective chemical reactions are employed, chemical reactivities of organic polymer surfaces have not been thoroughly explored. We demonstrate a water-only and slurry-less polishing technique using an acrylic polymer plate. We investigated the possibility of glass processing with several polymer materials and found that normal acrylic polymers have remarkable properties for polishing. Glass and silicon surfaces with atomic-level flatness can be produced using only an acrylic polymer plate and water. We believe that the developed polishing methods will become popular in the future because they are simple and cost-effective processes.

1.
T.
Hoshino
,
Y.
Kurata
,
Y.
Terasaki
, and
K.
Susa
, “
Mechanism of polishing of SiO2 films by CeO2 particles
,”
J. Non-Cryst. Solids
283
,
129
(
2001
).
2.
C. J.
Evans
,
E.
Paul
,
D.
Dornfeld
,
D. A.
Lucca
,
G.
Byrne
,
M.
Tricard
,
F.
Klocke
,
O.
Dambon
, and
B. A.
Mullany
, “
Material removal mechanisms in lapping and polishing
,”
CIRP Ann.
52
,
611
(
2003
).
3.
Y.
Lu
,
Y.
Tani
, and
K.
Kawata
, “
Proposal of new polishing technology without using a polishing pad
,”
CIRP Ann.
51
,
255
(
2002
).
4.
H.
Hara
,
Y.
Sano
,
H.
Mimura
,
K.
Arima
,
A.
Kubota
,
K.
Yagi
,
J.
Murata
, and
K.
Yamauch
, “
Novel abrasive-free planarization of 4H-SiC (0001) using catalyst
,”
J. Electron. Mater.
35
,
L11
(
2006
).
5.
T.
Okamoto
,
Y.
Sano
,
K.
Tachibana
,
K.
Arima
,
A. N.
Hattori
,
K.
Yagi
,
J.
Murata
,
S.
Sadakuni
, and
K.
Yamauchi
, “
Dependence of process characteristics on atomic-step density in catalyst-referred etching of 4H-SiC (0001) surface
,”
J. Nanosci. Nanotechnol.
11
,
2928
(
2011
).
6.
Y.
Sano
,
K.
Arima
, and
K.
Yamauchi
, “
Planarization of SiC and GaN wafers using polishing technique utilizing catalyst surface reaction
,”
ECS J. Solid State Sci. Technol.
2
,
N3028
(
2013
).
7.
D.
Toh
,
P.
Van Bui
,
A.
Isohashi
,
S.
Matsuyama
,
K.
Yamauchi
, and
Y.
Sano
, “
An abrasive-free chemical polishing method assisted by nickel catalyst generated by in situ electrochemical plating
,”
Rev. Sci. Instrum.
91
,
045108
(
2020
).
8.
T.
Okamoto
,
Y.
Sano
,
K.
Tachibana
,
B. V.
Pho
,
K.
Arima
,
K.
Inagaki
,
K.
Yagi
,
J.
Murata
,
S.
Sadakuni
, and
H.
Asano
, “
Improvement of removal rate in abrasive-free planarization of 4H-SiC substrates using catalytic platinum and hydrofluoric acid
,”
Jpn. J. Appl. Phys., Part 1
51
,
046501
(
2012
).
9.
A.
Isohashi
,
P. V.
Bui
,
D.
Toh
,
S.
Matsuyama
,
Y.
Sano
,
K.
Inagaki
,
Y.
Morikawa
, and
K.
Yamaichi
, “
Chemical etching of silicon carbide in pure water by using platinum catalyst
,”
Appl. Phys. Lett.
110
,
201601
(
2017
).
10.
D.
Toh
,
P.
Van Bui
,
K.
Yamaichi
, and
Y.
Sano
, “
Catalyzed chemical polishing of SiO2 glasses in pure water
,”
Rev. Sci. Instrum.
90
,
045115
(
2019
).
11.
A.
Kubota
,
K.
Yagi
,
J.
Murata
,
H.
Yasui
,
S.
Miyamoto
,
H.
Hara
,
Y.
Sano
, and
K.
Yamauchi
, “
A study on a surface preparation method for single-crystal SiC using an Fe catalyst
,”
J. Electron. Mater.
38
,
159
(
2009
).
12.
J.
Murata
and
K.
Goda
, “
Abrasive-free surface finishing of glass using a Ce film
,”
J. Mater. Process. Technol.
265
,
56
(
2019
).
13.
I. H.
Sung
,
H. J.
Kim
, and
C. D.
Yeo
, “
First observation on the feasibility of scratch formation by pad-particle mixture in CMP process
,”
Appl. Surf. Sci.
258
,
8298
(
2012
).
14.
T.
Enomoto
,
U.
Satake
,
T.
Miyake
, and
N.
Tabata
, “
A newly developed polishing pad for achieving high surface flatness without edge roll off
,”
CIRP Annals
60
,
371
(
2011
).
15.
L. M.
Cook
, “
Chemical processes in glass polishing
,”
J. Non-Cryst. Solids
120
,
152
(
1990
).
16.
M.
Krishnan
,
J. W.
Nalaskowski
, and
L. M.
Cook
, “
Chemical mechanical planarization: Slurry chemistry, materials, and mechanisms
,”
Chem. Rev.
110
,
178
(
2010
).
17.
Y. G.
Wang
,
L. C.
Zhang
, and
A.
Biddut
, “
Chemical effect on the material removal rate in the CMP of silicon wafers
,”
Wear
270
,
312
(
2011
).
18.
J.
Seo
, “
A review on chemical and mechanical phenomena at the wafer interface during chemical mechanical planarization
,”
J. Mater. Res.
36
,
235
(
2021
).
19.
M. L.
Bender
, “
Oxygen exchange as evidence for the existence of an intermediate in ester hydrolysis
,”
J. Am. Chem. Soc.
73
,
1626
(
1951
).
20.
H.
Gunaydin
and
K. N.
Houk
, “
Molecular dynamics prediction of the mechanism of ester hydrolysis in water
,”
J. Am. Chem. Soc.
130
,
15232
(
2008
).

Supplementary Material

You do not currently have access to this content.