We study the ultrafast electronic transport of energy in a photoexcited nanoscale Au/Fe hetero-structure by modeling the spatiotemporal profile of energy densities that drives transient strain, which we quantify by femtosecond x-ray diffraction. This flow of energy is relevant for intrinsic demagnetization and ultrafast spin transport. We measured lattice strain for different Fe layer thicknesses ranging from few atomic layers to several nanometers and modeled the spatiotemporal flow of energy densities. The combination of a high electron-phonon coupling coefficient and a large Sommerfeld constant in Fe is found to yield electronic transfer of nearly all energy from Au to Fe within the first hundreds of femtoseconds.

1.
E.
Beaurepaire
,
J.-C.
Merle
,
A.
Daunois
, and
J.-Y.
Bigot
, “
Ultrafast spin dynamics in ferromagnetic nickel
,”
Phys. Rev. Lett.
76
,
4250
(
1996
).
2.
M.
Hofherr
,
P.
Maldonado
,
O.
Schmitt
,
M.
Berritta
,
U.
Bierbrauer
,
S.
Sadashivaiah
,
A.
Schellekens
,
B.
Koopmans
,
D.
Steil
,
M.
Cinchetti
 et al, “
Speed and efficiency of femtosecond spin current injection into a nonmagnetic material
,”
Phys. Rev. B
96
,
100403
(
2017
).
3.
M.
Battiato
,
K.
Carva
, and
P. M.
Oppeneer
, “
Superdiffusive spin transport as a mechanism of ultrafast demagnetization
,”
Phys. Rev. Lett.
105
,
027203
(
2010
).
4.
M.
Battiato
,
K.
Carva
, and
P. M.
Oppeneer
, “
Theory of laser-induced ultrafast superdiffusive spin transport in layered heterostructures
,”
Phys. Rev. B
86
,
024404
(
2012
).
5.
D. M.
Nenno
,
B.
Rethfeld
, and
H. C.
Schneider
, “
Particle-in-cell simulation of ultrafast hot-carrier transport in Fe/Au heterostructures
,”
Phys. Rev. B
98
,
224416
(
2018
).
6.
G.
Malinowski
,
F.
Dalla Longa
,
J.
Rietjens
,
P.
Paluskar
,
R.
Huijink
,
H.
Swagten
, and
B.
Koopmans
, “
Control of speed and efficiency of ultrafast demagnetization by direct transfer of spin angular momentum
,”
Nat. Phys.
4
,
855
858
(
2008
).
7.
D.
Rudolf
,
L.-O.
Chan
,
M.
Battiato
,
R.
Adam
,
J. M.
Shaw
,
E.
Turgut
,
P.
Maldonado
,
S.
Mathias
,
P.
Grychtol
,
H. T.
Nembach
 et al, “
Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current
,”
Nat. Commun.
3
,
1037
(
2012
).
8.
A.
Fognini
,
T. U.
Michlmayr
,
A.
Vaterlaus
, and
Y.
Acremann
, “
Laser-induced ultrafast spin current pulses: A thermodynamic approach
,”
J. Phys.: Condens. Matter
29
,
214002
(
2017
).
9.
G.-M.
Choi
,
B.-C.
Min
,
K.-J.
Lee
, and
D. G.
Cahill
, “
Spin current generated by thermally driven ultrafast demagnetization
,”
Nat. Commun.
5
,
4334
(
2014
).
10.
A.
Alekhin
,
I.
Razdolski
,
N.
Ilin
,
J. P.
Meyburg
,
D.
Diesing
,
V.
Roddatis
,
I.
Rungger
,
M.
Stamenova
,
S.
Sanvito
,
U.
Bovensiepen
 et al, “
Femtosecond spin current pulses generated by the nonthermal spin-dependent Seebeck effect and interacting with ferromagnets in spin valves
,”
Phys. Rev. Lett.
119
,
017202
(
2017
).
11.
Y.
Beyazit
,
J.
Beckord
,
P.
Zhou
,
J.
Meyburg
,
F.
Kühne
,
D.
Diesing
,
M.
Ligges
, and
U.
Bovensiepen
, “
Local and nonlocal electron dynamics of Au/Fe/MgO (001) heterostructures analyzed by time-resolved two-photon photoemission spectroscopy
,”
Phys. Rev. Lett.
125
,
076803
(
2020
).
12.
K.
Bühlmann
,
G.
Saerens
,
A.
Vaterlaus
, and
Y.
Acremann
, “
Detection of femtosecond spin injection into a thin gold layer by time and spin resolved photoemission
,”
Sci. Rep.
10
,
12632
(
2020
).
13.
A.
Alekhin
,
I.
Razdolski
,
M.
Berritta
,
D.
Bürstel
,
V.
Temnov
,
D.
Diesing
,
U.
Bovensiepen
,
G.
Woltersdorf
,
P. M.
Oppeneer
, and
A.
Melnikov
, “
Magneto-optical properties of au upon the injection of hot spin-polarized electrons across Fe/Au (0 0 1) interfaces
,”
J. Phys.: Condens. Matter
31
,
124002
(
2019
).
14.
I.
Razdolski
,
A.
Alekhin
,
U.
Martens
,
D.
Bürstel
,
D.
Diesing
,
M.
Münzenberg
,
U.
Bovensiepen
, and
A.
Melnikov
, “
Analysis of the time-resolved magneto-optical Kerr effect for ultrafast magnetization dynamics in ferromagnetic thin films
,”
J. Phys.: Condens. Matter
29
,
174002
(
2017
).
15.
I.
Razdolski
,
A.
Alekhin
,
N.
Ilin
,
J. P.
Meyburg
,
V.
Roddatis
,
D.
Diesing
,
U.
Bovensiepen
, and
A.
Melnikov
, “
Nanoscale interface confinement of ultrafast spin transfer torque driving non-uniform spin dynamics
,”
Nat. Commun.
8
,
15007
(
2017
).
16.
K.
Kang
and
G.-M.
Choi
, “
Electron-phonon coupling parameter of ferromagnetic metal Fe and Co
,”
Material
14
,
2755
(
2021
).
17.
K.-H.
Ko
and
G.-M.
Choi
, “
Optical method of determining the spin diffusion length of ferromagnetic metals
,”
J. Magn. Magn. Mater.
510
,
166945
(
2020
).
18.
J.
Pudell
,
A.
von Reppert
,
D.
Schick
,
F.
Zamponi
,
M.
Rössle
,
M.
Herzog
,
H.
Zabel
, and
M.
Bargheer
, “
Ultrafast negative thermal expansion driven by spin disorder
,”
Phys. Rev. B
99
,
094304
(
2019
).
19.
A.
von Reppert
,
L.
Willig
,
J.-E.
Pudell
,
S.
Zeuschner
,
G.
Sellge
,
F.
Ganss
,
O.
Hellwig
,
J.
Arregi
,
V.
Uhlíř
,
A.
Crut
 et al, “
Spin stress contribution to the lattice dynamics of FePt
,”
Sci. Adv.
6
,
eaba1142
(
2020
).
20.
A.
von Reppert
,
M.
Mattern
,
J.-E.
Pudell
,
S. P.
Zeuschner
,
K.
Dumesnil
, and
M.
Bargheer
, “
Unconventional picosecond strain pulses resulting from the saturation of magnetic stress within a photoexcited rare earth layer
,”
Struct. Dyn.
7
,
024303
(
2020
).
21.
J.-E.
Pudell
,
M.
Mattern
,
M.
Hehn
,
G.
Malinowski
,
M.
Herzog
, and
M.
Bargheer
, “
Heat transport without heating?—An ultrafast x-ray perspective into a metal heterostructure
,”
Adv. Funct. Mater.
30
,
2004555
(
2020
).
22.
A.
Eschenlohr
,
M.
Battiato
,
P.
Maldonado
,
N.
Pontius
,
T.
Kachel
,
K.
Holldack
,
R.
Mitzner
,
A.
Föhlisch
,
P. M.
Oppeneer
, and
C.
Stamm
, “
Ultrafast spin transport as key to femtosecond demagnetization
,”
Nat. Mater.
12
,
332
336
(
2013
).
23.
A.
Khorsand
,
M.
Savoini
,
A.
Kirilyuk
, and
T.
Rasing
, “
Optical excitation of thin magnetic layers in multilayer structures
,”
Nat. Mater.
13
,
101
102
(
2014
).
24.
J.
Pudell
,
A.
Maznev
,
M.
Herzog
,
M.
Kronseder
,
C.
Back
,
G.
Malinowski
,
A.
von Reppert
, and
M.
Bargheer
, “
Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond x-ray diffraction
,”
Nat. Commun.
9
,
3335
(
2018
).
25.
R.
Henriquez
,
M.
Flores
,
L.
Moraga
,
G.
Kremer
,
C.
González-Fuentes
, and
R. C.
Munoz
, “
Electron scattering at surfaces and grain boundaries in thin Au films
,”
Appl. Surf. Sci.
273
,
315
323
(
2013
).
26.
J.
Hong
and
D. L.
Mills
, “
Spin dependence of the inelastic electron mean free path in Fe and Ni: Explicit calculations and implications
,”
Phys. Rev. B
62
,
5589
5600
(
2000
).
27.
Z.
Lin
,
L. V.
Zhigilei
, and
V.
Celli
, “
Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium
,”
Phys. Rev. B
77
,
075133
(
2008
).
28.
S.
Zeuschner
,
M.
Mattern
,
J.-E.
Pudell
,
A.
von Reppert
,
M.
Rössle
,
W.
Leitenberger
,
J.
Schwarzkopf
,
J.
Boschker
,
M.
Herzog
, and
M.
Bargheer
, “
Reciprocal space slicing: A time-efficient approach to femtosecond x-ray diffraction
,”
Struct. Dyn.
8
,
014302
(
2021
).
29.
D.
Schick
,
A.
Bojahr
,
M.
Herzog
,
C. v K.
Schmising
,
R.
Shayduk
,
W.
Leitenberger
,
P.
Gaal
, and
M.
Bargheer
, “
Normalization schemes for ultrafast x-ray diffraction using a table-top laser-driven plasma source
,”
Rev. Sci. Instrum.
83
,
025104
(
2012
).
30.
D.
Schick
, “
udkm1Dsim—A Python toolbox for simulating 1D ultrafast dynamics in condensed matter
,”
Comput. Phys. Commun.
266
,
108031
(
2021
).
31.
K.
Ohta
and
H.
Ishida
, “
Matrix formalism for calculation of the light beam intensity in stratified multilayered films, and its use in the analysis of emission spectra
,”
Appl. Opt.
29
,
2466
2473
(
1990
).
32.
Z.
Lin
,
L. V.
Zhigilei
, and
V.
Celli
, “
Electron-phonon coupling and electron heat capacity in metals at high electron temperatures
,”
Phys. Rev. B
77
,
075133
(
2008
). Data for Fe are not available in the original manuscript but on the server of the authors: https://faculty.virginia.edu/CompMat/electron-phonon-coupling/.
33.
Y.
Takahashi
and
H.
Akiyama
, “
Heat capacity of gold from 80 to 1000 K
,”
Thermochim. Acta
109
,
105
109
(
1986
).
34.
P. D.
Desai
, “
Thermodynamic properties of iron and silicon
,”
J. Phys. Chem. Ref. Data
15
,
967
983
(
1986
).
35.
T.
Barron
,
W.
Berg
, and
J.
Morrison
, “
On the heat capacity of crystalline magnesium oxide
,”
Proc. R. Soc. London, Ser. A
250
,
70
83
(
1959
).
36.
N.
Stojanovic
,
D.
Maithripala
,
J.
Berg
, and
M.
Holtz
, “
Thermal conductivity in metallic nanostructures at high temperature: Electrons, phonons, and the Wiedemann-Franz law
,”
Phys. Rev. B
82
,
075418
(
2010
).
37.
N.
Bäcklund
, “
An experimental investigation of the electrical and thermal conductivity of iron and some dilute iron alloys at temperatures above 100 K
,”
J. Phys. Chem. Solids
20
,
1
16
(
1961
).
38.
A. J.
Slifka
,
B. J.
Filla
, and
J.
Phelps
, “
Thermal conductivity of magnesium oxide from absolute, steady-state measurements
,”
J. Res. Natl. Inst. Stand. Technol.
103
,
357
(
1998
).
39.
N.
Medvedev
and
I.
Milov
, “
Electron-phonon coupling in metals at high electronic temperatures
,”
Phys. Rev. B
102
,
064302
(
2020
).
40.
D.
Zahn
,
F.
Jakobs
,
H.
Seiler
,
T. A.
Butcher
,
D.
Engel
,
J.
Vorberger
,
U.
Atxitia
,
Y. W.
Windsor
, and
R.
Ernstorfer
, “
Intrinsic energy flow in laser-excited 3D ferromagnets
,”
Phys. Rev. Res.
4
(1),
013104
(
2022
).
41.
Y.
Chang
and
L.
Himmel
, “
Temperature dependence of the elastic constants of Cu, Ag, and Au above room temperature
,”
J. Appl. Phys.
37
,
3567
3572
(
1966
).
42.
J.
Rayne
and
B.
Chandrasekhar
, “
Elastic constants of iron from 4.2 to 300 K
,”
Phys. Rev.
122
,
1714
(
1961
).
43.
M. A.
Durand
, “
The temperature variation of the elastic moduli of NaCl, KCl and MgO
,”
Phys. Rev.
50
,
449
(
1936
).
44.
M.
Nicoul
,
U.
Shymanovich
,
A.
Tarasevitch
,
D.
von der Linde
, and
K.
Sokolowski-Tinten
, “
Picosecond acoustic response of a laser-heated gold-film studied with time-resolved x-ray diffraction
,”
Appl. Phys. Lett.
98
,
191902
(
2011
).
45.
F.
Nix
and
D.
MacNair
, “
The thermal expansion of pure metals: Copper, gold, aluminum, nickel, and iron
,”
Phys. Rev.
60
,
597
(
1941
).
46.
G.
White
and
O.
Anderson
, “
Grüneisen parameter of magnesium oxide
,”
J. Appl. Phys.
37
,
430
432
(
1966
).
You do not currently have access to this content.