This work acquires a vertical β-Ga2O3 Schottky barrier diode (SBD) with the advanced termination structure of p-type NiOx and n-type β-Ga2O3 heterojunctions and coupled field plate structures to alleviate the crowding electric field. A Ga2O3 SBD delivers an average breakdown voltage of 1860 V and a specific on-resistance of 3.12 mΩ cm2, yielding a state-of-the-art direct-current Baliga's power figure of merit of 1.11 GW/cm2 at an anode area of 2.83 × 10−5 cm2. In addition, the Ga2O3 SBD with the same fabrication process at a large area of 1.21 × 10−2 cm2 also presents a high forward current of 7.13 A, a breakdown voltage of 1260 V, and a power figure-of-merit of 235 MW/cm2. According to dynamic pulse switching and capacitance-frequency characteristics, an optimized p-NiOx/Ga2O3 interface with a maximum trap density of 4.13 × 1010 eV−1 cm−2 is delivered. Moreover, based on the forward current-voltage measurement at various temperatures, the physics behind a forward conduction mechanism is illustrated. Ga2O3 SBDs with p-NiOx/n-Ga2O3 heterojunction termination, field plate, high power figure of merit, and high quality interface as well as suppressed resistance increase after dynamic pulse switching, verifying their great promise for future high power applications.

1.
M.
Higashiwaki
,
K.
Sasaki
,
H.
Murakami
,
Y.
Kumagai
,
A.
Koukitu
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakosh
,
Semicond. Sci. Technol.
31
(
3
),
034001
(
2016
).
2.
A. J.
Green
,
K. D.
Chabak
,
E. R.
Heller
,
R. C.
Fitch
,
M.
Baldini
,
A.
Fiedler
,
K.
Irmscher
,
G.
Wagner
,
Z.
Galazka
,
S. E.
Tetlak
,
A.
Crespo
,
K.
Leedy
, and
G. H.
Jessen
,
IEEE Electron Device Lett.
37
(
7
),
902
905
(
2016
).
3.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Phys. Status Solidi A
211
(
1
),
21
26
(
2014
).
4.
M.
Higashiwaki
and
G. H.
Jessen
,
Appl. Phys. Lett.
112
(
6
),
060401
(
2018
).
5.
M. J.
Tadjerz
,
N. A.
Mahadik
,
V. D.
Wheeler
,
E. R.
Glaser
,
L.
Ruppalt
,
A. D.
Koehler
,
K. D.
Hobart
,
C. R.
Eddy
, Jr.
, and
F. J.
Kub
,
ECS J. Solid State Sci. Technol.
5
(
9
),
P468
470
(
2016
).
6.
K. D.
Chabak
,
N.
Moser
,
A. J.
Green
,
D. E.
Walker
, Jr.
,
S. E.
Tetlak
,
E.
Heller
,
A.
Crespo
,
R.
Fitch
,
J. P.
McCandless
,
K.
Leedy
,
M.
Baldini
,
G.
Wagner
,
Z.
Galazka
,
X.
Li
, and
G.
Jessen
,
Appl. Phys. Lett.
109
(
21
),
213501
(
2016
).
7.
H.
Zhou
,
M.
Si
,
S.
Alghamdi
,
G.
Qiu
,
L.
Yang
, and
P. D.
Ye
,
IEEE Electron Device Lett.
38
,
103
106
(
2017
).
8.
M.
Higashiwaki
,
K.
Sasaki
,
T.
Kamimura
,
M. H.
Wong
,
D.
Krishnamurthy
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
103
(
12
),
123511
(
2013
).
9.
C.
Wang
,
J.
Zhang
,
S.
Xu
 et al.,
J. Phys. D: Appl. Phys.
54
,
243001
(
2021
).
10.
H. H.
Gong
,
X. H.
Chen
,
Y.
Xu
,
F.-F.
Ren
,
S. L.
Gu
, and
J. D.
Ye
,
Appl. Phys. Lett.
117
,
022104
(
2020
).
11.
T.
Lin
,
X.
Li
, and
J.
Jang
,
Appl. Phys. Lett.
108
,
233503
(
2016
).
12.
Y.
Kokubun
,
S.
Kubo
, and
S.
Nakagomi
,
Appl. Phys. Exp.
9
(
9
),
091101
(
2016
).
13.
P.
Schlupp
,
D.
Splith
,
H.
von Wenckstern
, and
M.
Grundmann
,
Phys. Status Solidi A
216
(
7
),
1800729
(
2019
).
14.
R.
Karsthof
,
H.
von Wenckstern
, and
M.
Grundmann
,
IEEE Trans. Electron Devices
62
(
12
),
3999
4003
(
2015
).
15.
T.
Watahiki
,
Y.
Yuda
,
A.
Furukawa
,
M.
Yamamuka
,
Y.
Takiguchi
, and
S.
Miyajima
,
Appl. Phys. Lett.
111
(
22
),
222104
(
2017
).
16.
J.
Zhang
,
S.
Han
,
M.
Cui
,
X.
Xu
,
W.
Li
,
H.
Xu
,
C.
Jin
,
M.
Gu
,
L.
Chen
, and
K. H. L.
Zhang
,
ACS Appl. Electron. Mater.
2
(
2
),
456
463
(
2020
).
17.
M.
Tyagi
,
M.
Tomar
, and
V.
Gupta
,
IEEE Electron Device Lett.
34
(
1
),
81
83
(
2013
).
18.
Y.
Lv
,
Y.
Wang
,
X.
Fu
,
S.
Dun
,
Z.
Sun
,
H.
Liu
,
X.
Zhou
,
X.
Song
,
Y.
Cai
,
Q.
Yan
,
K.
Dang
,
S.
Liang
,
J.
Zhang
,
H.
Zhou
,
Z.
Feng
,
S.
Cai
, and
Y.
Hao
,
IEEE Trans. Power Electron.
36
(
6
),
6179
6182
(
2021
).
19.
S.
Ghosh
,
M.
Baral
,
R.
Kamparath
,
S. D.
Singh
, and
T.
Ganguli
,
Appl. Phys. Lett.
115
(
25
),
251603
(
2019
).
20.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
, 3rd ed. (
Wiley
,
Hoboken, NJ
,
2006
).
21.
Z.
Hu
,
Q.
Feng
,
Z.
Feng
,
Y.
Cai
,
Y.
Shen
,
G.
Yan
,
X.
Lu
,
C.
Zhang
,
H.
Zhou
, and
J.
Zhang
,
Nanoscale Res. Lett.
14
(
2
),
2
(
2019
).
22.
J.
Yang
,
S.
Ahn
,
F.
Ren
,
S.
Pearton
,
S.
Jang
,
J.
Kim
, and
A.
Kuramata
,
Appl. Phys. Lett.
110
(
19
),
192101
(
2017
).
23.
J.
Yang
,
S.
Ahn
,
F.
Ren
,
S. J.
Pearton
,
S.
Jang
, and
A.
Kuramata
,
IEEE Electron Device Lett.
38
(
7
),
906
910
(
2017
).
24.
K.
Sasaki
,
M.
Higashiwaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
IEEE Electron Device Lett.
34
,
493
495
(
2013
).
25.
Z.
Hu
,
H.
Zhou
,
Q.
Feng
 et al.,
IEEE Electron Device Lett.
39
(
10
),
1564
1567
(
2018
).
26.
N.
Allen
,
M.
Xiao
,
X. D.
Yan
,
K.
Sasaki
,
M. J.
Tadjer
,
J.
Ma
,
R.
Zhang
,
H.
Wang
, and
Y.
Zhang
,
IEEE Electron Device Lett.
40
(
9
),
1399
(
2019
).
27.
H.
Zhou
,
Q.
Feng
,
J.
Ning
,
C.
Zhang
,
P.
Ma
,
Y.
Hao
,
Q.
Yan
,
J.
Zhang
,
Y.
Lv
,
Z.
Liu
,
Y.
Zhang
,
K.
Dang
,
P.
Dong
, and
Z.
Feng
,
IEEE Electron Device Lett.
40
(
11
),
1788
1791
(
2019
).
28.
Z.
Hu
,
J.
Li
,
C.
Zhao
 et al.,
IEEE Trans. Electron Devices
67
,
5628
5632
(
2020
).
29.
J.
Yang
,
F.
Ren
,
M.
Tadjer
,
S. J.
Pearton
, and
A.
Kuramata
,
AIP Adv.
8
,
055026
(
2018
).
30.
J.
Yang
,
M.
Xian
,
P.
Carey
,
C.
Fares
,
J.
Partain
,
F.
Ren
,
M.
Tadjer
,
E.
Anber
,
D.
Foley
,
A.
Lang
,
J.
Hart
,
J.
Nathaniel
,
M. L.
Taheri
,
S. J.
Pearton
, and
A.
Kuramata
,
Appl. Phys. Lett.
114
,
232106
(
2019
).
31.
Z.
Hu
,
Y.
Lv
,
C.
Zhao
 et al.,
IEEE Electron Device Lett.
41
(
3
),
441
444
(
2020
).
32.
W.
Li
,
K.
Nomoto
,
Z.
Hu
, and
D. J. H. G.
Xing
,
IEEE Electron Device Lett.
41
,
107
110
(
2020
).
33.
C.-H.
Lin
,
Y.
Yuda
,
Y.
Kumagai
, and
M.
Higashiwaki
,
IEEE Electron Device Lett.
40
(
9
),
1487
(
2019
).
34.
K.
Konishi
,
K.
Goto
,
H.
Murakami
, and
M.
Higashiwaki
,
Appl. Phys. Lett.
110
,
103506
(
2017
).
35.
K.
Sasaki
,
D.
Wakimoto
,
Q.
Tu Thieu
,
Y.
Koishikawa
,
A.
Kuramata
,
M.
Higashiwaki
, and
S.
Yamakoshi
,
IEEE Electron Device Lett.
38
(
6
),
783
(
2017
).
36.
M.
Higashiwaki
,
K.
Sasaki
,
K.
Goto
 et al., in
73rd Annual Device Research Conference (DRC)
(
IEEE
,
2015
), pp.
29
30
.
37.
C.
Wang
,
H.
Gong
,
W.
Lei
 et al.,
IEEE Electron Device Lett.
42
(
4
),
485
488
(
2021
).
38.
Q.
Yan
,
H.
Gong
,
J.
Zhang
 et al.,
Appl. Phys. Lett.
118
,
122102
(
2021
).
39.
F.
Wilhelmi
,
S.
Kunori
,
K.
Sasaki
,
A.
Kuramata
,
Y.
Komatsu
, and
A.
Lindemann
, in
International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management Proceedings
(
VDE Verlag
,
Berlin
,
2021
).
40.
G. I.
Roberts
and
C. R.
Crowell
,
J. Appl. Phys.
41
(
4
),
1767
1776
(
1970
).
41.
K.
Zeng
,
Y.
Jia
, and
U.
Singisetti
,
IEEE Electron Device Lett.
37
,
906
(
2016
).
42.
L.
Du
,
H.
Li
,
L.
Yan
,
J.
Zhang
,
Q.
Xin
,
Q.
Wang
, and
A.
Song
,
Appl. Phys. Lett.
110
,
011602
(
2017
).
43.
X.
Lu
,
X.
Zhou
,
H.
Jiang
,
K. W.
Ng
,
Z.
Chen
,
Y.
Pei
,
K. M.
Lau
, and
G.
Wang
,
IEEE Electron Device Lett.
41
(
3
),
449
452
(
2020
).
44.
H.
Sato
,
T.
Minami
,
S.
Takata
, and
T.
Yamada
,
Thin Solid Films
236
(
1–2
),
27
(
1993
).
45.
F.
Zhou
,
H.
Gong
,
W.
Xu
 et al.,
IEEE Trans. Power Electron.
37
(
2
),
1223
1227
(
2022
).
46.
J.
Osvald
,
L.
Hrubčín
, and
B.
Zaťko
,
Appl. Surf. Sci.
533
,
147389
(
2020
).
47.
X.
Ma
,
Sadagopan
Priyamvada
, and
Sudarshan
Tangali
,
Phys. Stat. Sol. A
203
(
3
),
643
650
(
2006
).
48.
H.
Zhou
,
J.
Zhang
,
C.
Zhang
 et al.,
J. Semicond.
40
,
011803
(
2019
).
You do not currently have access to this content.