Magnon excitations in antiferromagnetic materials and their physical implications have helped to facilitate the emergence of device concepts not presently available in ferromagnets. A unique characteristic of antiferromagnetic magnons is the coexistence of opposite spin polarization, which mimics the electron spin in a variety of transport phenomena. Among them, the most prominent spin-contrasting phenomenon is the magnon spin Nernst effect (SNE), which refers to the generation of a transverse pure magnon spin current through a longitudinal temperature gradient. We introduce selected recent progress in the study of magnon SNE in collinear antiferromagnets with focus on its underlying physical mechanism entailing profound topological features of magnon band structures. By reviewing how the magnon SNE has inspired and enriched the exploration of topological magnons, we offer our perspective on this emerging frontier that holds potential in future spintronic nano-technology.

1.
A. V.
Chumak
,
V. I.
Vasyuchka
,
A. A.
Serga
, and
B.
Hillebrands
, “
Magnon spintronics
,”
Nat. Phys.
11
,
453
461
(
2015
).
2.
A.
Barman
,
G.
Gubbiotti
,
S.
Ladak
,
A. O.
Adeyeye
,
M.
Krawczyk
,
J.
Gräfe
,
C.
Adelmann
,
S.
Cotofana
,
A.
Naeemi
,
V. I.
Vasyuchka
et al, “
The 2021 magnonics roadmap
,”
J. Phys.: Condens. Matter
33
,
413001
(
2021
).
3.
F.
Keffer
,
H.
Kaplan
, and
Y.
Yafet
, “
Spin waves in ferromagnetic and antiferromagnetic materials
,”
Am. J. Phys.
21
,
250
257
(
1953
).
4.
R.
Cheng
,
M. W.
Daniels
,
J.-G.
Zhu
, and
D.
Xiao
, “
Antiferromagnetic spin wave field-effect transistor
,”
Sci. Rep.
6
,
24223
(
2016
).
5.
V.
Baltz
,
A.
Manchon
,
M.
Tsoi
,
T.
Moriyama
,
T.
Ono
, and
Y.
Tserkovnyak
, “
Antiferromagnetic spintronics
,”
Rev. Mod. Phys.
90
,
015005
(
2018
).
6.
S. M.
Rezende
,
A.
Azevedo
, and
R. L.
Rodríguez-Suárez
, “
Introduction to antiferromagnetic magnons
,”
J. Appl. Phys.
126
,
151101
(
2019
).
7.
S.
Seki
,
T.
Ideue
,
M.
Kubota
,
Y.
Kozuka
,
R.
Takagi
,
M.
Nakamura
,
Y.
Kaneko
,
M.
Kawasaki
, and
Y.
Tokura
, “
Thermal generation of spin current in an antiferromagnet
,”
Phys. Rev. Lett.
115
,
266601
(
2015
).
8.
S. M.
Wu
,
W.
Zhang
,
K.
Amit
,
P.
Borisov
,
J. E.
Pearson
,
J. S.
Jiang
,
D.
Lederman
,
A.
Hoffmann
, and
A.
Bhattacharya
, “
Antiferromagnetic spin Seebeck effect
,”
Phys. Rev. Lett.
116
,
097204
(
2016
).
9.
Y.
Onose
,
T.
Ideue
,
H.
Katsura
,
Y.
Shiomi
,
N.
Nagaosa
, and
Y.
Tokura
, “
Observation of the magnon Hall effect
,”
Science
329
,
297
299
(
2010
).
10.
H.
Katsura
,
N.
Nagaosa
, and
P. A.
Lee
, “
Theory of the thermal Hall effect in quantum magnets
,”
Phys. Rev. Lett.
104
,
066403
(
2010
).
11.
S.
Owerre
, “
A first theoretical realization of honeycomb topological magnon insulator
,”
J. Phys.: Condens. Matter
28
,
386001
(
2016
).
12.
S. K.
Kim
,
H.
Ochoa
,
R.
Zarzuela
, and
Y.
Tserkovnyak
, “
Realization of the Haldane–Kane–Mele model in a system of localized spins
,”
Phys. Rev. Lett.
117
,
227201
(
2016
).
13.
R.
Cheng
,
S.
Okamoto
, and
D.
Xiao
, “
Spin Nernst effect of magnons in collinear antiferromagnets
,”
Phys. Rev. Lett.
117
,
217202
(
2016
).
14.
V. A.
Zyuzin
and
A. A.
Kovalev
, “
Magnon spin Nernst effect in antiferromagnets
,”
Phys. Rev. Lett.
117
,
217203
(
2016
).
15.
Y.
Shiomi
,
R.
Takashima
, and
E.
Saitoh
, “
Experimental evidence consistent with a magnon Nernst effect in the antiferromagnetic insulator MnPS3
,”
Phys. Rev. B
96
,
134425
(
2017
).
16.
An equivalent choice of the Nambu basis is X k = [ a k , b k , a k , b k ] T, which requires the Fourier transformation on the B sublattice to be N b i = k exp ( i k · r i ) b k.
17.
X.
Wang
and
X.
Wang
, “
Topological magnonics
,”
J. Appl. Phys.
129
,
151101
(
2021
).
18.
R.
Matsumoto
and
S.
Murakami
, “
Theoretical prediction of a rotating magnon wave packet in ferromagnets
,”
Phys. Rev. Lett.
106
,
197202
(
2011
).
19.
H.
Kondo
,
Y.
Akagi
, and
H.
Katsura
, “
2 topological invariant for magnon spin Hall systems
,”
Phys. Rev. B
99
,
041110
(
2019
).
20.
S.
Meyer
,
Y.-T.
Chen
,
S.
Wimmer
,
M.
Althammer
,
T.
Wimmer
,
R.
Schlitz
,
S.
Geprägs
,
H.
Huebl
,
D.
Ködderitzsch
,
H.
Ebert
et al, “
Observation of the spin Nernst effect
,”
Nat. Mater.
16
,
977
981
(
2017
).
21.
P.
Sheng
,
Y.
Sakuraba
,
Y.-C.
Lau
,
S.
Takahashi
,
S.
Mitani
, and
M.
Hayashi
, “
The spin Nernst effect in tungsten
,”
Sci. Adv.
3
,
e1701503
(
2017
).
22.
H.
Zhang
and
R.
Cheng
, “
Spin Nernst effect of antiferromagnetic magnons in the presence of spin diffusion
,”
Phys. Rev. Appl.
16
,
034035
(
2021
).
23.
Y. K.
Kato
,
R. C.
Myers
,
A. C.
Gossard
, and
D. D.
Awschalom
, “
Observation of the spin Hall effect in semiconductors
,”
Science
306
,
1910
1913
(
2004
).
24.
C.
Du
,
T.
Van der Sar
,
T. X.
Zhou
,
P.
Upadhyaya
,
F.
Casola
,
H.
Zhang
,
M. C.
Onbasli
,
C. A.
Ross
,
R. L.
Walsworth
,
Y.
Tserkovnyak
, and
A.
Yacoby
, “
Control and local measurement of the spin chemical potential in a magnetic insulator
,”
Science
357
,
195
198
(
2017
).
25.
N.
Bazazzadeh
,
M.
Hamdi
,
F.
Haddadi
,
A.
Khavasi
,
A.
Sadeghi
, and
S.
Mohseni
, “
Symmetry enhanced spin-Nernst effect in honeycomb antiferromagnetic transition metal trichalcogenide monolayers
,”
Phys. Rev. B
103
,
014425
(
2021
).
26.
J.-U.
Lee
,
S.
Lee
,
J. H.
Ryoo
,
S.
Kang
,
T. Y.
Kim
,
P.
Kim
,
C.-H.
Park
,
J.-G.
Park
, and
H.
Cheong
, “
Ising-type magnetic ordering in atomically thin FePS3
,”
Nano Lett.
16
,
7433
7438
(
2016
).
27.
N.
Sivadas
,
M. W.
Daniels
,
R. H.
Swendsen
,
S.
Okamoto
, and
D.
Xiao
, “
Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers
,”
Phys. Rev. B
91
,
235425
(
2015
).
28.
D.
Boyko
,
A. V.
Balatsky
, and
J.
Haraldsen
, “
Evolution of magnetic Dirac bosons in a honeycomb lattice
,”
Phys. Rev. B
97
,
014433
(
2018
).
29.
K. H.
Lee
,
S. B.
Chung
,
K.
Park
, and
J.-G.
Park
, “
Magnonic quantum spin Hall state in the zigzag and stripe phases of the antiferromagnetic honeycomb lattice
,”
Phys. Rev. B
97
,
180401
(
2018
).
30.
V. A.
Zyuzin
and
A. A.
Kovalev
, “
Spin Hall and Nernst effects of Weyl magnons
,”
Phys. Rev. B
97
,
174407
(
2018
).
31.
S.
Owerre
, “
Topological magnon nodal lines and absence of magnon spin Nernst effect in layered collinear antiferromagnets
,”
Europhys. Lett.
125
,
36002
(
2019
).
32.
A.
Pires
, “
Magnon spin Nernst effect on the antiferromagnetic checkerboard lattice
,”
Phys. Lett. A
383
,
125887
(
2019
).
33.
L.
Lima
, “
Spin Nernst effect and quantum entanglement in two-dimensional antiferromagnets on checkerboard lattice
,”
Phys. E
128
,
114580
(
2021
).
34.
Y.
Zhang
,
S.
Okamoto
, and
D.
Xiao
, “
Spin-Nernst effect in the paramagnetic regime of an antiferromagnetic insulator
,”
Phys. Rev. B
98
,
035424
(
2018
).
35.
A.
Mook
,
R. R.
Neumann
,
J.
Henk
, and
I.
Mertig
, “
Spin Seebeck and spin Nernst effects of magnons in noncollinear antiferromagnetic insulators
,”
Phys. Rev. B
100
,
100401
(
2019
).
36.
B.
Li
,
S.
Sandhoefner
, and
A. A.
Kovalev
, “
Intrinsic spin Nernst effect of magnons in a noncollinear antiferromagnet
,”
Phys. Rev. Res.
2
,
013079
(
2020
).
37.
V.
Bonbien
,
F.
Zhuo
,
A.
Salimath
,
O.
Ly
,
A.
Abbout
, and
A.
Manchon
, “
Topological aspects of antiferromagnets
,”
J. Phys. D: Appl. Phys.
55
,
103002
(
2022
).
38.
S.
Park
,
N.
Nagaosa
, and
B.-J.
Yang
, “
Thermal Hall effect, spin Nernst effect, and spin density induced by a thermal gradient in collinear ferrimagnets from magnon–phonon interaction
,”
Nano Lett.
20
,
2741
2746
(
2020
).
39.
N.
Bazazzadeh
,
M.
Hamdi
,
S.
Park
,
A.
Khavasi
,
S. M.
Mohseni
, and
A.
Sadeghi
, “
Magnetoelastic coupling enabled tunability of magnon spin current generation in two-dimensional antiferromagnets
,”
Phys. Rev. B
104
,
L180402
(
2021
).
40.
S.
Zhang
,
G.
Go
,
K.-J.
Lee
, and
S. K.
Kim
, “
SU(3) topology of magnon-phonon hybridization in 2D antiferromagnets
,”
Phys. Rev. Lett.
124
,
147204
(
2020
).
41.
B.
Ma
and
G. A.
Fiete
, “
Dzyaloshinskii-Moriya induced topological magnon-phonon hybridization in 2D antiferromagnetic insulators with tunable chern numbers
,” preprint arXiv:2107.11484 (
2021
).
42.
A.
Wildes
,
S.
Okamoto
, and
D.
Xiao
, “
Search for nonreciprocal magnons in MnPS3
,”
Phys. Rev. B
103
,
024424
(
2021
).
43.
I.
Lee
,
F. G.
Utermohlen
,
D.
Weber
,
K.
Hwang
,
C.
Zhang
,
J.
van Tol
,
J. E.
Goldberger
,
N.
Trivedi
, and
P. C.
Hammel
, “
Fundamental spin interactions underlying the magnetic anisotropy in the Kitaev ferromagnet CrI 3
,”
Phys. Rev. Lett.
124
,
017201
(
2020
).
44.
H.
Kondo
and
Y.
Akagi
, “
Nonlinear magnon spin Nernst effect in antiferromagnets and strain-tunable pure spin current
,” preprint arXiv:2109.09464 (
2021
).
45.
K.
Shen
, “
Magnon spin relaxation and spin Hall effect due to the dipolar interaction in antiferromagnetic insulators
,”
Phys. Rev. Lett.
124
,
077201
(
2020
).
You do not currently have access to this content.