In this work, we revisit the density functional theory (DFT)-based results for electron–phonon scattering in highly excited silicon. Using the state-of-the-art ab initio methods, we examine the main scattering channels, which contribute to the total electron–phonon scattering rate and the energy loss rate of photoexcited electrons in silicon as well as their temperature dependence. Both temperature dependence and the main scattering channels are shown to strongly differ for the total electron–phonon scattering rate and the energy loss rate of photoexcited electrons. While the total electron–phonon scattering rate increases strongly with temperature, the temperature dependence of the energy loss rate is negligible. Also, while acoustic phonons dominate the total electron–phonon scattering rate at 300 K, the main contribution to the energy loss rate comes from optical modes. In this respect, DFT-based results are found to disagree with conclusions of Fischetti et al. [Appl. Phys. Lett. 114, 222104 (2019)]. We explain the origin of this discrepancy, which is mainly due to differences in the description of the electron–phonon scattering channels associated with transverse phonons.

1.
S.
Poncé
,
W.
Li
,
S.
Reichardt
, and
F.
Giustino
, “
First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials
,”
Rep. Prog. Phys.
83
,
036501
(
2020
).
2.
G.
Brunin
,
H. P. C.
Miranda
,
M.
Giantomassi
,
M.
Royo
,
M.
Stengel
,
M. J.
Verstraete
,
X.
Gonze
,
G.-M.
Rignanese
, and
G.
Hautier
, “
Electron–phonon beyond Fröhlich: Dynamical quadrupoles in polar and covalent solids
,”
Phys. Rev. Lett.
125
,
136601
(
2020
).
3.
N.
Tandon
,
J. D.
Albrecht
, and
L. R.
Ram-Mohan
, “
Electr
on–ph
onon interaction and scattering in Si and Ge: Implications for phonon engineering
,”
J. Appl. Phys.
118
,
045713
(
2015
).
4.
M.
Bernardi
,
D.
Vigil-Fowler
,
J.
Lischner
,
J. B.
Neaton
, and
S. G.
Louie
, “
Ab initio study of hot carriers in the first picosecond after sunlight absorption in silicon
,”
Phys. Rev. Lett.
112
,
257402
(
2014
).
5.
J.
Noffsinger
,
E.
Kioupakis
,
C. G.
Van de Walle
,
S. G.
Louie
, and
M. L.
Cohen
, “
Phonon-assisted optical absorption in silicon from first principles
,”
Phys. Rev. Lett.
108
,
167402
(
2012
).
6.
Z.
Wang
,
S.
Wang
,
S.
Obukhov
,
N.
Vast
,
J.
Sjakste
,
V.
Tyuterev
, and
N.
Mingo
, “
Thermoelectric transport properties of silicon: Towards an ab initio approach
,”
Phys. Rev. B
83
,
205208
(
2011
).
7.
M.
Wörle
,
A. W.
Holleitner
,
R.
Kienberger
, and
H.
Iglev
, “
Ultrafast hot carrier relaxation in silicon monitored by phase-resolved transient absorption spectroscopy
,”
Phys. Rev. B
104
,
L041201
(
2021
).
8.
H.
Tanimura
,
J.
Kanasaki
,
K.
Tanimura
,
J.
Sjakste
, and
N.
Vast
, “
Ultrafast relaxation dynamics of highly excited hot electrons in silicon
,”
Phys. Rev. B
100
,
035201
(
2019
).
9.
M. V.
Fischetti
,
P. D.
Yoder
,
M. M.
Khatami
,
G.
Gaddemane
, and
L.
Van de Put
, “
Hot electrons in Si lose energy to optical phonons: Truth or myth?
,”
Appl. Phys. Lett.
114
,
222104
(
2019
).
10.
V.
Talbo
,
J.
Saint-Martin
,
S.
Retailleau
, and
P.
Dollfus
, “
Non-linear effects and thermoelectric efficiency of quantum dot-based single-electron transistors
,”
Sci. Rep.
7
,
14783
(
2017
).
11.
M. V.
Fischetti
and
S. E.
Laux
, “
Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects
,”
Phys. Rev. B
38
,
9721
(
1988
).
12.
H.
Tanimura
,
J.
Kanasaki
,
K.
Tanimura
,
J.
Sjakste
,
N.
Vast
,
M.
Calandra
, and
F.
Mauri
, “
Formation of hot-electron ensembles quasiequilibrated in momentum space by ultrafast momentum scattering of highly excited hot electrons photoinjected into the Γ valley of GaAs
,”
Phys. Rev. B
93
,
161203
16120R
(
2016
).
13.
J.
Sjakste
,
N.
Vast
,
G.
Barbarino
,
M.
Calandra
,
F.
Mauri
,
J.
Kanasaki
,
H.
Tanimura
, and
K.
Tanimura
, “
Energy relaxation mechanism of hot-electron ensembles in GaAs: Theoretical and experimental study of its temperature dependence
,”
Phys. Rev. B
97
,
064302
(
2018
).
14.
S.
Ahmad
,
O. P.
Daga
, and
W. S.
Khokle
, “
Energy and momentum loss rates for hot electrons in silicon
,”
Phys. Status Solidi (B)
40
,
631
(
1970
).
15.
S.
Ponce
,
E. R.
Margine
,
C.
Verdi
, and
F.
Giustino
, “
EPW: Electr
on–ph
onon coupling, transport and superconducting properties using maximally localized Wannier functions
,”
Comput. Phys. Commun.
209
,
116
(
2016
).
16.
P. B.
Allen
, “
Theory of thermal relaxation of electrons in metals
,”
Phys. Rev. Lett.
59
,
1460
(
1987
).
17.
J.
Sjakste
,
V.
Tyuterev
, and
N.
Vast
, “
Intervalley scattering in GaAs: Ab initio calculation of the effective parameters for Monte Carlo simulations
,”
Appl. Phys. A
86
,
301
(
2007
).
18.
J.
Sjakste
,
K.
Tanimura
,
G.
Barbarino
,
L.
Perfetti
, and
N.
Vast
, “
Hot electron relaxation dynamics in semiconductors: Assessing the strength of the electr
on–ph
onon coupling from the theoretical and experimental viewpoints
,”
J. Phys.: Condens. Matter
30
,
353001
(
2018
).
19.
S.
Baroni
,
S.
de Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
, “
Phonons and related crystal properties from density-functional perturbation theory
,”
Rev. Mod. Phys.
73
,
515
(
2001
).
20.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M.
Buongiorno Nardelli
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
M.
Cococcioni
,
N.
Colonna
,
I.
Carnimeo
,
A.
Dal Corso
,
S.
de Gironcoli
,
P.
Delugas
,
R. A.
DiStasio
, Jr.
,
A.
Ferretti
,
A.
Floris
,
G.
Fratesi
,
G.
Fugallo
,
R.
Gebauer
,
U.
Gerstmann
,
F.
Giustino
,
T.
Gorni
,
J.
Jia
,
M.
Kawamura
,
H.-Y.
Ko
,
A.
Kokalj
,
E.
Küçükbenli
,
M.
Lazzeri
,
M.
Marsili
,
N.
Marzari
,
F.
Mauri
,
N. L.
Nguyen
,
H.-V.
Nguyen
,
A.
Otero de-la Roza
,
L.
Paulatto
,
S.
Poncé
,
D.
Rocca
,
R.
Sabatini
,
B.
Santra
,
M.
Schlipf
,
A. P.
Seitsonen
,
A.
Smogunov
,
I.
Timrov
,
T.
Thonhauser
,
P.
Umari
,
N.
Vast
,
X.
Wu
, and
S.
Baroni
, “
Advanced capabilities for materials modelling with Quantum ESPRESSO
,”
J. Phys.: Condens. Matter
29
,
465901
(
2017
).
21.
M.
Calandra
,
G.
Profeta
, and
F.
Mauri
, “
Adiabatic and nonadiabatic phonon dispersion in a Wannier approach
,”
Phys. Rev. B
82
,
165111
(
2010
).
22.
J. L.
Birman
,
M.
Lax
, and
R.
Loudon
, “
Intervalley-scattering selection rules in III–V semiconductors
,”
Phys. Rev.
145
,
620
(
1966
).
23.
C.
Jacoboni
and
L.
Reggiani
, “
The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials
,”
Rev. Mod. Phys.
55
,
645
(
1983
).
24.
D. D.
Nolte
,
W.
Walukiewicz
, and
E. E.
Haller
, “
Band-edge hydrostatic deformation potentials in III–V semiconductors
,”
Phys. Rev. Lett.
59
,
501
(
1987
).
25.
G. S.
Argill
,
J.
Angilello
, and
K. L.
Kavanagh
, “
Lattice compression from conduction electrons in heavily doped Si:As
,”
Phys. Rev. Lett.
61
,
1748
(
1988
).
26.
J.
Sjakste
,
I.
Timrov
,
P.
Gava
,
N.
Mingo
, and
N.
Vast
, “
First-principles calculations of electr
on–ph
onon scattering
,” in
Annual Review of Heat Transfer
(
Begell House Inc
.,
Danbury, CT
,
2014
), Vol.
17
, p.
333
.
27.
M. V.
Fischetti
and
S. E.
Laux
, “
Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys
,”
J. Appl. Phys.
80
,
2234
(
1996
).
28.
J. T.
Teherani
,
W.
Chern
,
D. A.
Antoniadis
,
J. L.
Hoyt
,
L.
Ruiz
,
C. D.
Poweleit
, and
J.
Menéndez
, “
Extraction of large valence-band energy offsets and comparison to theoretical values for strained-Si/strained-Ge type-II heterostructures on relaxed SiGe substrates
,”
Phys. Rev. B
85
,
205308
(
2012
).
29.
V. A.
Jhalani
,
J.-J.
Zhou
,
J.
Park
,
C. E.
Dreyer
, and
M.
Bernardi
, “
Piezoelectric electr
on–ph
onon interaction from ab initio dynamical quadrupoles: Impact on charge transport in wurtzite GaN
,”
Phys. Rev. Lett.
125
,
136602
(
2020
).
30.
S.
Poncé
,
F.
Macheda
,
E.
Margine
,
N.
Marzari
,
N.
Bonini
, and
F.
Giustino
, “
First-principles predictions of hall and drift mobilities in semiconductors
,”
Phys. Rev. Res.
3
,
043022
(
2021
).
31.
S.
Zollner
,
S.
Gopalan
, and
M.
Cardona
, “
Microscopic theory of intervalley scattering in GaAs: K-dependence of deformation potentials and scattering rates
,”
J. Appl. Phys.
68
,
1682
(
1990
).
32.
M.
Fischetti
,
N.
Sano
,
S.
Laux
, and
K.
Natori
, “
Full-band-structure theory of high-field transport and impact ionization of electrons and holes in Ge, Si, GaAs, InAs, and InGaAs
,”
Res. Gate
(published online
2015
).
33.
G.
Pizzi
,
V.
Vitale
,
R.
Arita
,
S.
Blügel
,
F.
Freimuth
,
G.
Géranton
,
M.
Gibertini
,
D.
Gresch
,
C.
Johnson
,
T.
Koretsune
,
J.
Ibañez-Azpiroz
,
H.
Lee
,
J. M.
Lihm
,
D.
Marchand
,
A.
Marrazzo
,
Y.
Mokrousov
,
J. I.
Mustafa
,
Y.
Nohara
,
Y.
Nomura
,
L.
Paulatto
,
S.
Poncé
,
T.
Ponweiser
,
J.
Qiao
,
F.
Thöle
,
S. S.
Tsirkin
,
M.
Wierzbowska
,
N.
Marzari
,
D.
Vanderbilt
,
I.
Souza
,
A. A.
Mostofi
, and
J. R.
Yates
, “
Wannier90 as a community code: New features and applications
,”
J. Phys.: Condens. Matter
32
,
165902
(
2020
).

Supplementary Material

You do not currently have access to this content.