Chalcogenide superlattice (CSL) is one of the emerging material technologies for ultralow-power phase change memories. However, the resistance switching mechanism of the CSL-based device is still hotly debated. Early electrical measurements and recent materials characterizations have suggested that the Kooi-phase CSL is very likely to be the as-fabricated low-resistance state. Due to the difficulty in in situ characterization at atomic resolution, the structure of the electrically switched CSL in its high-resistance state is still unknown and mainly investigated by theoretical modelings. So far, there has been no simple model that can unify experimental results obtained from device-level electrical measurements and atomic-level materials characterizations. In this work, we carry out atomistic transport modelings of the CSL-based device and propose a simple mechanism accounting for its high resistance. The modeled high-resistance state is based on the interfacial SbTe bilayer flipped CSL that has previously been mistaken for the low-resistance state. This work advances the understanding of CSL for emerging memory applications.

1.
S. R.
Ovshinsky
, “
Reversible electrical switching phenomena in disordered structures
,”
Phys. Rev. Lett.
21
,
1450
(
1968
).
2.
A. D.
Pearson
, “
Characteristics of semiconducting glass switching/memory diodes
,”
IBM J. Res. Dev.
13
,
510
(
1969
).
3.
S.
Raoux
,
G. W.
Burr
,
M. J.
Breitwisch
,
C. T.
Rettner
,
Y. C.
Chen
,
R. M.
Shelby
,
M.
Salinga
,
D.
Krebs
,
S. H.
Chen
,
H. L.
Lung
, and
C. H.
Lam
, “
Phase-change random access memory: A scalable technology
,”
IBM J. Res. Dev.
52
,
465
(
2008
).
4.
M.
Wuttig
and
N.
Yamada
, “
Phase-change materials for rewriteable data storage
,”
Nat. Mater.
6
,
824
(
2007
).
5.
F. T.
Hady
,
A.
Foong
,
B.
Veal
, and
D.
Williams
, “
Platform storage performance with 3D XPoint technology
,”
Proc. IEEE
105
,
1822
(
2017
).
6.
R. E.
Simpson
,
P.
Fons
,
A. V.
Kolobov
,
T.
Fukaya
,
M.
Krbal
,
T.
Yagi
, and
J.
Tominaga
, “
Interfacial phase-change memory
,”
Nat. Nanotechnol.
6
,
501
(
2011
).
7.
T. C.
Chong
,
L. P.
Shia
,
R.
Zhao
,
P. K.
Tan
,
J. M.
Li
,
H. K.
Lee
, and
X. S.
Miao
, “
Phase change random access memory cell with superlattice-like structure
,”
Appl. Phys. Lett.
88
,
122114
(
2006
).
8.
T. C.
Chong
,
L. P.
Shi
,
X. Q.
Wei
,
R.
Zhao
,
H. K.
Lee
,
P.
Yang
, and
A. Y.
Du
, “
Crystalline amorphous semiconductor superlattice
,”
Phys. Rev. Lett.
100
,
136101
(
2008
).
9.
A. I.
Khan
,
A.
Daus
,
R.
Islam
,
K. M.
Neilson
,
H. R.
Lee
,
H. P.
Wong
, and
E.
Pop
, “
Ultralow–switching current density multilevel phase-change memory on a flexible substrate
,”
Science
373
,
1243
(
2021
).
10.
J.
Tominaga
,
A. V.
Kolobov
,
P.
Fons
,
T.
Nakano
, and
S.
Murakami
, “
Ferroelectric order control of the Dirac-semimetal phase in GeTe-Sb2Te3 superlattices
,”
Adv. Mater. Interfaces
1
,
1300027
(
2014
).
11.
T.
Ohyanagi
,
N.
Takaura
,
M.
Tai
,
M.
Kitamura
,
M.
Kinoshita
,
K.
Akita
,
T.
Morikawa
,
S.
Kato
,
M.
Araidai
,
K.
Kamiya
,
T.
Yamamoto
, and
K.
Shiraishi
, “
Charge-injection phase change memory with high-quality GeTe/Sb2Te3 superlattice featuring 70-μA RESET, 10-ns SET and 100M endurance cycles operations
,” in
IEEE International Electron Devices Meeting
(
IEEE
,
2013
), pp.
30
35
.
12.
T.
Ohyanagi
,
M.
Kitamura1
,
M.
Araidai
,
S.
Kato
,
N.
Takaura
, and
K.
Shiraishi
, “
GeTe sequences in superlattice phase change memories and their electrical characteristics
,”
Appl. Phys. Lett.
104
,
252106
(
2014
).
13.
T.
Ohyanagi
and
N.
Takaura
, “
Investigation of switching region in superlattice phase change memories
,”
AIP Adv.
6
,
105104
(
2016
).
14.
K. L.
Okabe
,
A.
Sood
,
E.
Yalon
,
C. M.
Neumann
,
M.
Asheghi
,
E.
Pop
,
K. E.
Goodson
, and
H. S. P.
Wong
, “
Understanding the switching mechanism of interfacial phase change memory
,”
J. Appl. Phys.
125
,
184501
(
2019
).
15.
M.
Boniardi
,
J. E.
Boschker
,
J.
Momand
,
B. J.
Kooi
,
A.
Redaelli
, and
R.
Calarco
, “
Evidence for thermal-based transition in super-lattice phase change memory
,”
Phys. Status Solidi RRL
13
,
1800634
(
2019
).
16.
L.
Zhou
,
Z.
Yang
,
X.
Wang
,
H.
Qian
,
M.
Xu
,
X.
Cheng
,
H.
Tong
, and
X. S.
Miao
, “
Resistance drift suppression utilizing GeTe/Sb2Te3 superlattice-like phase-change materials
,”
Adv. Electron. Mater.
6
,
1900781
(
2020
).
17.
D.
Térébénec
,
N.
Castellani
,
N.
Bernier
,
V.
Sever
,
P.
Kowalczyk
,
M.
Bernard
,
M. C.
Cyrille
,
N. P.
Tran
,
F.
Hippert
, and
P.
Noé
, “
Improvement of phase-change memory performance by means of GeTe/Sb2Te3 superlattices
,”
Phys. Status Solidi RRL
15
,
2000538
(
2021
).
18.
J.
Momand
,
R.
Wang
,
J. E.
Boschker
,
M. A.
Verheijen
,
R.
Calarco
, and
B. J.
Kooi
, “
Interface formation of two-and three-dimensionally bonded materials in the case of GeTe–Sb2Te3 superlattices
,”
Nanoscale
7
,
19136
(
2015
).
19.
N. K.
Chen
,
X. B.
Li
,
X. P.
Wang
,
S. Y.
Xie
,
W. Q.
Tian
,
S. B.
Zhang
, and
H. B.
Sun
, “
Metal–insulator transition of Ge–Sb–Te superlattice: An electron counting model study
,”
IEEE Trans. Nanotechnol.
17
,
140
(
2018
).
20.
B. J.
Kooi
and
J. T. M.
Hosson
, “
Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of GexSb2Te3+x (x = 1, 2, 3) phase change material
,”
J. Appl. Phys.
92
,
3584
(
2002
).
21.
A.
Lotnyka
,
U.
Rossa
,
T.
Dankwort
,
I.
Hilmi
,
L.
Kienle
, and
B.
Rauschenbach
, “
Atomic structure and dynamic reconfiguration of layered defects in van der Waals layered Ge-Sb-Te based materials
,”
Acta Mater.
141
,
92
(
2017
).
22.
A. V.
Kolobov
,
P.
Fons
,
Y.
Saito
, and
J.
Tominaga
, “
Atomic reconfiguration of van der Waals gaps as the key to switching in GeTe/Sb2Te3 superlattices
,”
ACS Omega
2
,
6223
(
2017
).
23.
A.
Lotnyka
,
T.
Dankwort
,
I.
Hilmi
,
L.
Kienle
, and
B.
Rauschenbach
, “
Atomic-scale observation of defects motion in van der Waals layered chalcogenide based materials
,”
Scr. Mater.
166
,
154
(
2019
).
24.
W.
Chen
and
H.
Li
, “
Native filament-to-dielectric interfaces in phase change superlattice memories
,”
Microelectron. Eng.
215
,
111007
(
2019
).
25.
X. B.
Li
,
N. K.
Chen
,
X. P.
Wang
, and
H. B.
Sun
, “
Phase-change superlattice materials toward low power consumption and high density data storage: Microscopic picture, working principles, and optimization
,”
Adv. Fun. Mater.
28
,
1803380
(
2018
).
26.
M. H.
Lankhorst
,
B. W.
Ketelaars
, and
R. A.
Wolters
, “
Low-cost and nanoscale non-volatile memory concept for future silicon chips
,”
Nat. Mater.
4
,
347
(
2005
).
27.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. I. J.
Probert
,
K.
Refson
, and
M. C.
Payne
, “
First principles methods using CASTEP
,”
Z. Kristallogr.
220
,
567
(
2005
).
28.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
29.
B.
Sklénard
,
F.
Triozon
,
C.
Sabbione
,
L.
Nistor
,
M.
Frei
,
G.
Navarro
, and
J.
Li
, “
Electronic and thermal properties of GeTe/Sb2Te3 superlattices by ab initio approach: Impact of Van der Waals gaps on vertical lattice thermal conductivity
,”
Appl. Phys. Lett.
119
,
201911
(
2021
).
30.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
31.
M.
Brandbyge
,
J. L.
Mozos
,
P.
Ordejón
,
J.
Taylor
, and
K.
Stokbro
, “
Density-functional method for nonequilibrium electron transport
,”
Phys. Rev. B
65
,
165401
(
2002
).
32.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge University Press
,
Cambridge
,
England
,
1997
).
33.
A.
Lotnyk
,
U.
Ross
,
S.
Bernütz
,
E.
Thelander
, and
B.
Rauschenbach
, “
Local atomic arrangements and lattice distortions in layered Ge-Sb-Te crystal structures
,”
Sci. Rep.
6
,
26724
(
2016
).
34.
B.
Casarin
,
A.
Caretta
,
J.
Momand
,
B. J.
Kooi
,
M. A.
Verheijen
,
V.
Bragaglia
,
R.
Calarco
,
M.
Chukalina
,
X.
Yu
,
J.
Robertson
,
F. R. L.
Lange
,
M.
Wuttig
,
A.
Redaelli
,
E.
Varesi
,
F.
Parmigiani
, and
M.
Malvestuto
, “
Revisiting the local structure in Ge-Sb-Te based chalcogenide superlattices
,”
Sci. Rep.
6
,
22353
(
2016
).
35.
X. M.
Yu
and
J.
Robertson
, “
Atomic layering, intermixing and switching mechanism in Ge-Sb-Te based chalcogenide superlattices
,”
Sci. Rep.
6
,
37325
(
2016
).
36.
Y.
Saito
,
A. V.
Kolobov
,
P.
Fons
,
K. V.
Mitrofanov
,
K.
Makino
,
J.
Tominaga
, and
J.
Robertson
, “
Origin of resistivity contrast in interfacial phase-change memory: The crucial role of Ge/Sb intermixing
,”
Appl. Phys. Lett.
114
,
132102
(
2019
).
37.
W.
Zhang
,
A.
Thiess
,
P.
Zalden
,
R.
Zeller
,
P. H.
Dederichs
,
J. Y.
Raty
,
M.
Wutting
,
S.
Blugel
, and
R.
Mazzarello
, “
Role of vacancies in metal–insulator transitions of crystalline phase-change materials
,”
Nat. Mater.
11
,
952
(
2012
).
38.
A. H.
Edwards
,
A. C.
Pineda
,
P. A.
Schultz
,
M. G.
Martin
,
A. P.
Thompson
,
H. P.
Hjalmarson
, and
C. J.
Umrigar
, “
Electronic structure of intrinsic defects in crystalline germanium telluride
,”
Phys. Rev. B
73
,
045210
(
2006
).
39.
H.
Kwon
,
A. I.
Khan
,
C.
Perez
,
M.
Asheghi
,
E.
Pop
, and
K. E.
Goodson
, “
Uncovering thermal and electrical properties of Sb2Te3/GeTe superlattice films
,”
Nano Lett.
21
,
5984
(
2021
).
40.
H. J.
Lee
,
M.
Lee
,
K.
Lee
,
J.
Jo
,
H.
Yang
,
Y.
Kim
,
S. C.
Chae
,
U.
Waghmare
, and
J. H.
Lee
, “
Scale-free ferroelectricity induced by flat phonon bands in HfO2
,”
Science
369
,
1343
(
2020
).
41.
M.
Tai
,
T.
Ohyanagi
,
M.
Kinoshita
,
T.
Morikawa
,
K.
Akita
,
S.
Kato
,
H.
Shirakawa
,
M.
Araidai
,
K.
Shiraishi
, and
N.
Takaura
, “
1T-1R pillar-type topological-switching random access memory (TRAM) and data retention of GeTe/Sb2Te3 super-lattice films
,” in
IEEE Symposium on VLSI Technology
(
IEEE
,
2014
).
42.
K. V.
Mitrofanov
,
Y.
Saito
,
N.
Miyata
,
P.
Fons
,
A. V.
Kolobov
, and
J.
Tominaga
, “
High‐speed bipolar switching of sputtered Ge-Te/Sb-Te superlattice iPCM with enhanced cyclability
,”
Phys. Status Solidi RRL
13
,
1900105
(
2019
).

Supplementary Material

You do not currently have access to this content.