A concept of optically triggered and electrically controlled ultra-fast neuromorphic computing processor based on an antiferromagnetic/heavy metal (AFM/HM) heterostructure is proposed. The AFM/HM-based artificial neurons are excited with short THz-range pulses, triggering precession in AFM. Bias electric current in the HM layer can be used to modify the resonance frequency of precession. The conversion of the precession into the electric current in the HM-layer occurs via the inverse spin Hall effect. A model of a neuromorphic processor is, thus, proposed, consisting of excitatory AFM-based artificial neurons—oscillators, and processing neurons—detectors. We show that the use of optical excitation can significantly increase the processing speed of neuromorphic computing at low power consumption. Examples of the implementation of the simplest logical operations (OR, AND) are demonstrated.

1.
Q.
Li
,
W.
Cai
,
X.
Wang
,
Y.
Zhou
,
D. D.
Feng
, and
M.
Chen
, “
Medical image classification with convolutional neural network
,” in
13th International Conference on Control Automation Robotics & Vision (ICARCV)
(
IEEE
,
2014
), pp.
844
848
.
2.
P.
Wang
,
B.
Xu
,
J.
Xu
,
G.
Tian
,
C.-L.
Liu
, and
H.
Hao
, “
Semantic expansion using word embedding clustering and convolutional neural network for improving short text classification
,”
Neurocomputing
174
,
806
814
(
2016
).
3.
R. T.
Chen
,
Y.
Rubanova
,
J.
Bettencourt
, and
D.
Duvenaud
, “
Neural ordinary differential equations
,” arXiv:1806.07366 (
2018
).
4.
L.
Banchi
,
E.
Grant
,
A.
Rocchetto
, and
S.
Severini
, “
Modelling non-markovian quantum processes with recurrent neural networks
,”
New J. Phys.
20
,
123030
(
2018
).
5.
W.
Zhang
,
B.
Gao
,
J.
Tang
,
P.
Yao
,
S.
Yu
,
M.-F.
Chang
,
H.-J.
Yoo
,
H.
Qian
, and
H.
Wu
, “
Neuro-inspired computing chips
,”
Nat. Electron.
3
,
371
382
(
2020
).
6.
R.
Khymyn
,
I.
Lisenkov
,
J.
Voorheis
,
O.
Sulymenko
,
O.
Prokopenko
,
V.
Tiberkevich
,
J.
Akerman
, and
A.
Slavin
, “
Ultra-fast artificial neuron: Generation of picosecond-duration spikes in a current-driven antiferromagnetic auto-oscillator
,”
Sci. Rep.
8
,
15727
(
2018
).
7.
O.
Sulymenko
,
O.
Prokopenko
,
I.
Lisenkov
,
J.
Åkerman
,
V.
Tyberkevych
,
A. N.
Slavin
, and
R.
Khymyn
, “
Ultra-fast logic devices using artificial ‘neurons’ based on antiferromagnetic pulse generators
,”
J. Appl. Phys.
124
,
152115
(
2018
).
8.
D.
Zhang
,
L.
Zeng
,
K.
Cao
,
M.
Wang
,
S.
Peng
,
Y.
Zhang
,
Y.
Zhang
,
J.-O.
Klein
,
Y.
Wang
, and
W.
Zhao
, “
All spin artificial neural networks based on compound spintronic synapse and neuron
,”
IEEE Trans. Biomed. Circuits Syst.
10
,
828
836
(
2016
).
9.
G.
Indiveri
,
B.
Linares-Barranco
,
R.
Legenstein
,
G.
Deligeorgis
, and
T.
Prodromakis
, “
Integration of nanoscale memristor synapses in neuromorphic computing architectures
,”
Nanotechnology
24
,
384010
(
2013
).
10.
J.-M.
Yang
,
E.-S.
Choi
,
S.-Y.
Kim
,
J.-H.
Kim
,
J.-H.
Park
, and
N.-G.
Park
, “
Perovskite-related (CH3NH3)3Sb2Br9 for forming-free memristor and low-energy-consuming neuromorphic computing
,”
Nanoscale
11
,
6453
6461
(
2019
).
11.
H.
Liu
,
C.
Zhang
,
H.
Malissa
,
M.
Groesbeck
,
M.
Kavand
,
R.
McLaughlin
,
S.
Jamali
,
J.
Hao
,
D.
Sun
,
R. A.
Davidson
 et al, “
Organic-based magnon spintronics
,”
Nat. Mater.
17
,
308
312
(
2018
).
12.
K.
Zakeri
, “
Terahertz magnonics: Feasibility of using terahertz magnons for information processing
,”
Physica C
549
,
164
170
(
2018
).
13.
A.
Kurenkov
,
S.
Fukami
, and
H.
Ohno
, “
Neuromorphic computing with antiferromagnetic spintronics
,”
J. Appl. Phys.
128
,
010902
(
2020
).
14.
E.
Vedmedenko
,
R.
Kawakami
,
D.
Sheka
,
P.
Gambardella
,
A.
Kirilyuk
,
A.
Hirohata
,
C.
Binek
,
O.
Chubykalo-Fesenko
,
S.
Sanvito
,
B.
Kirby
,
J.
Grollier
,
K.
Everschor-Sitte
,
T.
Kampfrath
,
C.-Y.
You
, and
A.
Berger
, “
The 2020 magnetism roadmap
,”
J. Phys. D: Appl. Phys.
53
,
453001
453044
(
2020
).
15.
J.
Grollier
,
D.
Querlioz
,
K.
Camsari
,
K.
Everschor-Sitte
,
S.
Fukami
, and
M. D.
Stiles
, “
Neuromorphic spintronics
,”
Nat. Electron.
3
,
360
370
(
2020
).
16.
R.
Khymyn
,
I.
Lisenkov
,
V.
Tiberkevich
,
B. A.
Ivanov
, and
A.
Slavin
, “
Antiferromagnetic THz-frequency Josephson-like oscillator driven by spin current
,”
Sci. Rep.
7
,
43705
(
2017
).
17.
G.
Tanaka
,
T.
Yamane
,
J. B.
Héroux
,
R.
Nakane
,
N.
Kanazawa
,
S.
Takeda
,
H.
Numata
,
D.
Nakano
, and
A.
Hirose
, “
Recent advances in physical reservoir computing: A review
,”
Neural Networks
115
,
100
123
(
2019
).
18.
V. P. A.
Safin
,
G. F. M.
Carpentieri
,
P. S. S.
Nikitov
,
V. T. A.
Kirilyuk
, and
A.
Slavin
, “
Electrically tunable detector of THz–frequency signals based on an antiferromagnet
,”
Appl. Phys. Lett.
117
,
222411
(
2020
).
19.
P.
Popov
,
A.
Safin
,
A.
Kirilyuk
,
S.
Nikitov
,
I.
Lisenkov
,
V.
Tyberkevich
, and
A.
Slavin
, “
Voltage-controlled anisotropy and current-induced magnetization dynamics in antiferromagnetic–piezoelectric layered heterostructures
,”
Phys. Rev. Appl.
13
,
044080
(
2020
).
20.
O.
Sulymenko
,
O.
Prokopenko
,
V.
Tiberkevich
,
A.
Slavin
,
B.
Ivanov
, and
R.
Khymyn
, “
Terahertz-frequency spin Hall auto-oscillator based on a canted antiferromagnet
,”
Phys. Rev. Appl.
8
,
064007
(
2017
).
21.
O. R.
Sulymenko
,
O. V.
Prokopenko
,
V. S.
Tyberkevych
, and
A. N.
Slavin
, “
Terahertz-frequency signal source based on an antiferromagnetic tunnel junction
,”
IEEE Magn. Lett.
9
,
1
5
(
2018
).
22.
O.
Gomonay
,
T.
Jungwirth
, and
J.
Sinova
, “
Narrow-band tunable terahertz detector in antiferromagnets via staggered-field and antidamping torques
,”
Phys. Rev. B
98
,
104430
(
2018
).
23.
A.
Kurenkov
,
S.
DuttaGupta
,
C.
Zhang
,
S.
Fukami
,
Y.
Horio
, and
H.
Ohno
, “
Artificial neuron and synapse realized in an antiferromagnet/ferromagnet heterostructure using dynamics of spin–orbit torque switching
,”
Adv. Mater.
31
,
1900636
(
2019
).
24.
N.
Bindal
,
C. A. C.
Ian
,
W. S.
Lew
, and
B. K.
Kaushik
, “
Antiferromagnetic skyrmion repulsion based artificial neuron device
,”
Nanotechnology
32
,
215204
(
2021
).
25.
T.
Satoh
,
S.-J.
Cho
,
R.
Iida
,
T.
Shimura
,
K.
Kuroda
,
H.
Ueda
,
Y.
Ueda
,
B.
Ivanov
,
F.
Nori
, and
M.
Fiebig
, “
Spin oscillations in antiferromagnetic NiO triggered by circularly polarized light
,”
Phys. Rev. Lett.
105
,
077402
(
2010
).
26.
A.
Zvezdin
, “
Dynamics of domain walls in weak ferromagnets
,”
Tech. Phys. Lett.
29
,
605
(
1979
).
27.
A.
Zvezdin
and
A.
Muchin
, “
New nonlinear dynamical effects in antiferromagnetics
,”
Bull. Lebedev Phys. Inst.
12
,
10
(
1981
).
28.
G.
Csaba
and
W.
Porod
, “
Coupled oscillators for computing: A review and perspective
,”
Appl. Phys. Rev.
7
,
011302
(
2020
).
You do not currently have access to this content.