Benefitting from regrown Ohmic contact with a contact ledge structure, high performance millimeter-wave InAlN/GaN HEMT is fabricated to satisfy low voltage RF applications. Different from the commonly seen fabrication process for regrown Ohmic contact, the scheme proposed in this work features MBE regrowth of n+ GaN on the whole wafer after formation of regrowth well without masks and partial removal of n+ GaN grown on the access region by self-stopping etching. The remaining n+ GaN on the barrier, serving as contact ledges, provides an additional current path to achieve the reduced equivalent source-drain distance and, thus, improved output current, and more current contribution is made by contact ledge as the actual source-drain distance shrinks. With the assistance of contact ledge, the fabricated device demonstrates output current density of 2.8 A/mm, a peak extrinsic transconductance of 823 mS/mm, a knee voltage of 1.6 V, and an on-resistance of 0.47 Ω·mm. Although self-stopping etching is performed on the access region, the device exhibits ignorable current collapse. At 30 GHz and VDS of 6 V, decent power-added-efficiency of 52% together with output power density of 1.2 W/mm is achieved, revealing the great potential of the proposed regrown Ohmic contact with contact ledge structure for low voltage RF applications.

1.
Y. F.
Wu
,
M.
Moore
,
A.
Saxler
,
T.
Wisleder
, and
P.
Parikh
, in
64th Device Research Conference
(
IEEE
,
2006
), pp.
151
152
.
2.
K.
Osawa
,
H.
Yoshikoshi
,
A.
Nitta
,
T.
Tanaka
,
E.
Mitani
, and
T.
Satoh
, in
46th European Microwave Conference
(
IEEE
,
2016
), pp.
397
400
.
3.
S.
Nakajima
, in
IEEE International Electron Devices Meeting
(
2018
).
4.
P.
Saunier
,
M. L.
Schuette
,
T. M.
Chou
,
H. Q.
Tserng
,
A.
Ketterson
,
E.
Beam
,
M.
Pilla
, and
X.
Gao
,
IEEE Trans. Electron Devices
60
,
3099
3104
(
2013
).
5.
H. W.
Then
,
L. A.
Chow
,
S.
Dasgupta
,
S.
Gardner
,
M.
Radosavljevic
,
V. R.
Rao
,
S. H.
Sung
,
G.
Yang
, and
R. S.
Chau
, in
Symposium on VLSI Technology
(
IEEE
,
2015
), pp.
T202
T203
.
6.
H. W.
Then
,
M.
Radosavljevic
,
K.
Jun
,
P.
Koirala
,
B.
Krist
,
T.
Talukdar
,
N.
Thomas
, and
P.
Fischer
,
IEEE Trans. Electron Devices
67
,
5306
5314
(
2020
).
7.
Y. W.
Zhou
,
J. J.
Zhu
,
M. H.
Mi
,
M.
Zhang
,
P. F.
Wang
,
Y. T.
Han
,
S.
Wu
,
J. L.
Liu
,
Q.
Zhu
,
Y. L.
Chen
,
B.
Hou
,
X. H.
Ma
, and
Y.
Hao
,
IEEE J. Electron Devices Soc.
9
,
756
762
(
2021
).
8.
Y. Z.
Yue
,
Z. Y.
Hu
,
J.
Guo
,
B.
Sensale-Rodriguez
,
G. W.
Li
,
R. H.
Wang
,
F.
Faria
,
T.
Fang
,
B.
Song
,
X.
Gao
,
S. P.
Guo
,
T.
Kosel
,
G.
Snider
,
P.
Fay
,
D.
Jena
, and
H.
Xing
,
IEEE Electron Device Lett.
33
,
988
990
(
2012
).
9.
Y. Z.
Yue
,
Z. Y.
Hu
,
J.
Guo
,
B.
Sensale-Rodriguez
,
G. W.
Li
,
R. H.
Wang
,
F.
Faria
,
B.
Song
,
X.
Gao
,
S. P.
Guo
,
T.
Kosel
,
G.
Snider
,
P.
Fay
,
D.
Jena
, and
H. G.
Xing
,
Jpn. J. Appl. Phys., Part 1
52
,
08jn14
(
2013
).
10.
A.
Hickman
,
R.
Chaudhuri
,
L.
Li
,
K.
Nomoto
,
S. J.
Bader
,
J. C. M.
Hwang
,
H. G.
Xing
, and
D.
Jena
,
IEEE J. Electron Devices Soc.
9
,
121
124
(
2021
).
11.
K.
Shinohara
,
D. C.
Regan
,
Y.
Tang
,
A. L.
Corrion
,
D. F.
Brown
,
J. C.
Wong
,
J. F.
Robinson
,
H. H.
Fung
,
A.
Schmitz
,
T. C.
Oh
,
S. J.
Kim
,
P. S.
Chen
,
R. G.
Nagele
,
A. D.
Margomenos
, and
M.
Micovic
,
IEEE Trans. Electron Devices
60
,
2982
2996
(
2013
).
12.
Y.
Tang
,
K.
Shinohara
,
D.
Regan
,
A.
Corrion
,
D.
Brown
,
J.
Wong
,
A.
Schmitz
,
H.
Fung
,
S.
Kim
, and
M.
Micovic
,
IEEE Electron Device Lett.
36
,
549
551
(
2015
).
13.
J.
Green
,
J. K.
Gillespie
,
R. C.
Fitch
,
D. E.
Walker
,
M.
Lindquist
,
A.
Crespo
,
D.
Brooks
,
E.
Beam
,
A.
Xie
,
V.
Kumar
,
J.
Jimenez
,
C.
Lee
,
Y.
Cao
,
K. D.
Chabak
, and
G. H.
Jessen
,
IEEE Electron Device Lett.
40
,
1056
1059
(
2019
).
14.
J. S.
Moon
,
D.
Wong
,
M.
Hu
,
P.
Hashimoto
,
M.
Antcliffe
,
C.
McGuire
,
M.
Micovic
, and
P.
Willadson
,
IEEE Electron Device Lett.
29
,
834
837
(
2008
).
15.
L.
Yang
,
B.
Hou
,
M. H.
Mi
,
Q.
Zhu
,
M.
Wu
,
J. J.
Zhu
,
Y.
Lu
,
M.
Zhang
,
L. X.
Chen
,
X. W.
Zhou
,
L.
Lv
,
X. H.
Ma
, and
Y.
Hao
,
IEEE Electron Device Lett.
39
,
1544
1547
(
2018
).
16.
Y.
Pei
,
L. K.
Shen
,
T.
Palacios
,
N. A.
Fichtenbaum
,
L. S.
McCarthy
,
S.
Keller
,
S. P.
DenBaars
, and
U. K.
Mishra
,
Jpn. J. Appl. Phys., Part 2
46
,
L842
L844
(
2007
).
17.
J.
Guo
,
G. W.
Li
,
F.
Faria
,
Y.
Cao
,
R. H.
Wang
,
J.
Verma
,
X.
Gao
,
S. P.
Guo
,
E.
Beam
,
A.
Ketterson
,
M.
Schuette
,
P.
Saunier
,
M.
Wistey
,
D.
Jena
, and
H.
Xing
,
IEEE Electron Device Lett.
33
,
525
527
(
2012
).
18.
D.
Marti
,
S.
Tirelli
,
V.
Teppati
,
L.
Lugani
,
J. F.
Carlin
,
M.
Malinverni
,
N.
Grandjean
, and
C. R.
Bolognesi
,
IEEE Electron Device Lett.
36
,
17
19
(
2015
).
19.
L.
Li
,
K.
Nomoto
,
M.
Pan
,
W. S.
Li
,
A.
Hickman
,
J.
Miller
,
K.
Lee
,
Z. Y.
Hu
,
S. J.
Bader
,
S. M.
Lee
,
J. C. M.
Hwang
,
D.
Jena
, and
H. G.
Xing
,
IEEE Electron Device Lett.
41
,
689
692
(
2020
).
You do not currently have access to this content.