The Gerchberg–Saxton (GS) algorithm is a widely employed algorithm for the calculation of a phase-only hologram (POH). However, the POH that can strictly satisfy the amplitude constraints on the object and the holographic plane may not exist or be obtained, resulting in speckle noise and reduction of the reconstruction quality. Relaxing the amplitude constraint during the iterations is an effective method to solve the above problem. In this work, a GS-double amplitude freedom (GS-DAF) algorithm is proposed. The amplitude constraint relaxation is realized by both the combined amplitude constraint and the support constraint. The spherical initial phase and oversampling method are applied to further improve the optical reconstruction quality of the GS-DAF algorithm. An enhanced reconstruction quality with less speckle noise has been achieved. The peak signal-to-noise ratio can be improved from 14.98 to 33.32 dB after 200 iterations.

1.
X.
Sui
,
Z.
He
,
G.
Jin
,
D.
Chu
, and
L.
Cao
, “
Band-limited double-phase method for enhancing image sharpness in complex modulated computer-generated holograms
,”
Opt. Express
29
,
2597
2612
(
2021
).
2.
Z.
He
,
X.
Sui
,
G.
Jin
,
D.
Chu
, and
L.
Cao
, “
Optimal quantization for amplitude and phase in computer-generated holography
,”
Opt. Express
29
,
119
133
(
2021
).
3.
L.
Shi
,
B.
Li
,
C.
Kim
,
P.
Kellnhofer
, and
W.
Matusik
, “
Towards real-time photorealistic 3D holography with deep neural networks
,”
Nature
591
,
234
239
(
2021
).
4.
J.
Wu
,
K.
Liu
,
X.
Sui
, and
L.
Cao
, “
High-speed computer-generated holography using an autoencoder-based deep neural network
,”
Opt. Lett.
46
,
2908
2911
(
2021
).
5.
A. K.
Yetisen
,
Y.
Montelongo
, and
H.
Butt
, “
Rewritable three-dimensional holographic data storage via optical forces
,”
Appl. Phys. Lett.
109
,
061106
(
2016
).
6.
F.
Yaras
,
H.
Kang
, and
L.
Onural
, “
State of the art in holographic displays: A survey
,”
J. Disp. Technol.
6
,
443
454
(
2010
).
7.
T.
Shimobaba
,
M.
Makowski
,
T.
Kakue
,
M.
Oikawa
,
N.
Okada
,
Y.
Endo
,
R.
Hirayama
, and
T.
Ito
, “
Lensless zoomable holographic projection using scaled Fresnel diffraction
,”
Opt. Express
21
,
25285
25290
(
2013
).
8.
R.
Zhao
,
L.
Huang
, and
Y.
Wang
, “
Recent advances in multi-dimensional metasurfaces holographic technologies
,”
PhotoniX
1
,
20
(
2020
).
9.
K.
Obata
,
J.
Koch
,
U.
Hinze
, and
B. N.
Chichkov
, “
Multi-focus two-photon polymerization technique based on individually controlled phase modulation
,”
Opt. Express
18
,
17193
17200
(
2010
).
10.
D.
Yang
,
L.
Liu
,
Q.
Gong
, and
Y.
Li
, “
Rapid two-photon polymerization of an arbitrary 3D microstructure with 3D focal field engineering
,”
Macromol. Rapid Commun.
40
,
e1900041
(
2019
).
11.
L.
Yang
,
A.
El-Tamer
,
U.
Hinze
,
J.
Li
,
Y.
Hu
,
W.
Huang
,
J.
Chu
, and
B. N.
Chichkov
, “
Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams
,”
Appl. Phys. Lett.
105
,
041110
(
2014
).
12.
Y.
Hayasaki
,
T.
Sugimoto
,
A.
Takita
, and
N.
Nishida
, “
Variable holographic femtosecond laser processing by use of a spatial light modulator
,”
Appl. Phys. Lett.
87
,
031101
(
2005
).
13.
M.
Pasienski
and
B.
DeMarco
, “
A high-accuracy algorithm for designing arbitrary holographic atom traps
,”
Opt. Express
16
,
2176
2190
(
2008
).
14.
A. L.
Gaunt
and
Z.
Hadzibabic
, “
Robust digital holography for ultracold atom trapping
,”
Sci. Rep.
2
,
721
(
2012
).
15.
S.
Li
and
Z.
Wang
, “
Generation of optical vortex based on computer-generated holographic gratings by photolithography
,”
Appl. Phys. Lett.
103
,
141110
(
2013
).
16.
V.
Grillo
,
G. C.
Gazzadi
,
E.
Karimi
,
E.
Mafakheri
,
R. W.
Boyd
, and
S.
Frabboni
, “
Highly efficient electron vortex beams generated by nanofabricated phase holograms
,”
Appl. Phys. Lett.
104
,
043109
(
2014
).
17.
R. W.
Gerchberg
and
W.
Saxton
, “
A practical algorithm for the determination of phase from image and diffraction plane pictures
,”
Optik
35
,
237
246
(
1972
).
18.
T.
Kozacki
, “
Holographic display with tilted spatial light modulator
,”
Appl. Opt.
50
,
3579
3588
(
2011
).
19.
J. S.
Chen
and
D. P.
Chu
, “
Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications
,”
Opt. Express
23
,
18143
18155
(
2015
).
20.
P.
Zhou
,
Y.
Bi
,
M.
Sun
,
H.
Wang
,
F.
Li
, and
Y.
Qi
, “
Image quality enhancement and computation acceleration of 3D holographic display using a symmetrical 3D GS algorithm
,”
Appl. Opt.
53
,
G209
G213
(
2014
).
21.
A.
Velez-Zea
and
R.
Torroba
, “
Mixed constraint in global and sequential hologram generation
,”
Appl. Opt.
60
,
1888
1895
(
2021
).
22.
R. D.
Leonardo
,
F.
Ianni
, and
G.
Ruocco
, “
Computer generation of optimal holograms for optical trap arrays
,”
Opt. Express
15
,
1913
1922
(
2007
).
23.
G.
Yang
,
B.
Dong
,
B.
Gu
,
J.
Zhuang
, and
O. K.
Ersoy
, “
Gerchberg–Saxton and Yang–Gu algorithms for phase retrieval in a nonunitary transform system: A comparison
,”
Appl. Opt.
33
,
209
218
(
1994
).
24.
J.
Fienup
, “
Iterative method applied to image reconstruction and to computer-generated holograms
,”
Opt. Eng.
19
,
2
13
(
1980
).
25.
S. P.
Poland
,
N.
Krstajić
,
R. D.
Knight
,
R. K.
Henderson
, and
S. M.
Ameer-Beg
, “
Development of a doubly weighted Gerchberg–Saxton algorithm for use in multibeam imaging applications
,”
Opt. Lett.
39
,
2431
2434
(
2014
).
26.
H.
Akahori
, “
Spectrum leveling by an iterative algorithm with a dummy area for synthesizing the kinoform
,”
Appl. Opt.
25
,
802
811
(
1986
).
27.
A.
Georgiou
,
J.
Christmas
,
N.
Collings
,
J.
Moore
, and
W. A.
Crossland
, “
Aspects of hologram calculation for video frames
,”
J. Opt. A: Pure Appl. Opt.
10
,
035302
(
2008
).
28.
C.
Chang
,
J.
Xia
,
L.
Yang
,
W.
Lei
,
Z.
Yang
, and
J.
Chen
, “
Speckle-suppressed phase-only holographic three-dimensional display based on doubleconstraint Gerchberg–Saxton algorithm
,”
Appl. Opt.
54
,
6994
7001
(
2015
).
29.
H.
Pang
,
J.
Wang
,
A.
Cao
, and
Q.
Deng
, “
High-accuracy method for holographic image projection with suppressed speckle noise
,”
Opt. Express
24
,
22766
22776
(
2016
).
30.
X.
Li
,
J.
Liu
,
T.
Zhao
, and
Y.
Wang
, “
Color dynamic holographic display with wide viewing angle by improved complex amplitude modulation
,”
Opt. Express
26
,
2349
2358
(
2018
).
31.
Y.
Zhao
,
L.
Cao
,
H.
Zhang
,
D.
Kong
, and
G.
Jin
, “
Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method
,”
Opt. Express
23
,
25440
25449
(
2015
).
32.
H.
Aagedal
,
M.
Schmid
,
T.
Beth
,
S.
Teiwes
, and
F.
Wyrowski
, “
Theory of speckles in diffractive optics and its application to beam shaping
,”
J. Mod. Opt.
43
,
1409
1421
(
1996
).
33.
D.
Pi
,
J.
Liu
,
X.
Duan
,
Y.
Han
, and
P.
He
, “
Design methods to generate a computer hologram for improving image quality
,”
Appl. Opt.
57
,
2720
2726
(
2018
).
34.
Z.
He
,
X.
Sui
,
H.
Zhang
,
G.
Jin
, and
L.
Cao
, “
Frequency-based optimized random phase for computer-generated holographic display
,”
Appl. Opt.
60
,
A145
A154
(
2021
).
35.
A. V.
Zea
,
J. F.
Barrera Ramirez
, and
R.
Torroba
, “
Optimized random phase only holograms
,”
Opt. Lett.
43
,
731
734
(
2018
).
36.
F.
Wyrowski
and
O.
Bryngdahl
, “
Speckle-free reconstruction in digital holography
,”
J. Opt. Soc. Am. A
6
,
1171
1174
(
1989
).
37.
T.
Zhao
,
J.
Liu
,
J.
Duan
,
X.
Li
, and
Y.
Wang
, “
Image quality enhancement via gradient-limited random phase addition in holographic display
,”
Opt. Commun.
442
,
84
89
(
2019
).
38.
Y.
Nagahama
,
T.
Shimobaba
,
T.
Kakue
,
Y.
Takaki
, and
T.
Ito
, “
Image quality improvement of random phase-free holograms by addressing the cause of ringing artifacts
,”
Appl. Opt.
58
,
2146
2151
(
2019
).
39.
T.
Shimobaba
and
T.
Ito
, “
Random phase-free computer-generated hologram
,”
Opt. Express
23
,
9549
9554
(
2015
).
40.
C.
Chang
,
Y.
Qi
,
J.
Wu
,
J.
Xia
, and
S.
Nie
, “
Speckle reduced lensless holographic projection from phase-only computer-generated hologram
,”
Opt. Express
25
,
6568
6580
(
2017
).
41.
P.
Sun
,
S.
Chang
,
S.
Liu
,
X.
Tao
,
C.
Wang
, and
Z.
Zheng
, “
Holographic near-eye display system based on double-convergence light Gerchberg–Saxton algorithm
,”
Opt. Express
26
,
10140
10151
(
2018
).
You do not currently have access to this content.