Quantum algorithms often benefit from the ability to execute multi-qubit (>2) gates. To date, such multi-qubit gates are typically decomposed into single- and two-qubit gates, particularly in superconducting qubit architectures. The ability to perform multi-qubit operations in a single step could vastly improve the fidelity and execution time of many algorithms. Here, we propose a single shot method for executing an i-Toffoli gate, a three-qubit gate with two control and one target qubit, using currently existing superconducting hardware. We show numerical evidence for a process fidelity over 99.5% and a gate time of 450 ns for superconducting qubits interacting via tunable couplers. Our method can straight forwardly be extended to implement gates with more than two control qubits at similar fidelities.

1.
F.
Arute
,
K.
Arya
,
R.
Babbush
 et al, “
Quantum supremacy using a programmable superconducting processor
,”
Nature
574
(
7779
),
505
510
(
2019
).
2.
J.
Preskill
, “
Quantum computing in the NISQ era and beyond
,”
Quantum
2
,
79
(
2018
).
3.
V. V.
Shende
and
I. L.
Markov
, “
On the CNOT-cost of TOFFOLI gates
,”
Quantum Info. Comput.
9
(
5
),
461
486
(
2009
).
4.
P. W.
Shor
, “
Scheme for reducing decoherence in quantum computer memory
,”
Phys. Rev. A
52
,
R2493
R2496
(
1995
).
5.
L. K.
Grover
, “
A fast quantum mechanical algorithm for database search,” Assoc. Comput. Mach.
in
Proceedings of the 28th Annual ACM Symposium on Theory of Computing
(
ACM
,
1996
), pp.
212
219
.
6.
Y.
Cao
,
J.
Romero
,
J. P.
Olson
 et al, “
Quantum chemistry in the age of quantum computing
,”
Chem. Rev.
119
(
19
),
10856
10915
(
2019
).
7.
S.
McArdle
,
S.
Endo
,
A.
Aspuru-Guzik
,
S. C.
Benjamin
, and
X.
Yuan
, “
Quantum computational chemistry
,”
Rev. Mod. Phys.
92
,
015003
(
2020
).
8.
S. E.
Rasmussen
,
K.
Groenland
,
R.
Gerritsma
,
K.
Schoutens
, and
N. T.
Zinner
, “
Single-step implementation of high-fidelity n-bit Toffoli gates
,”
Phys. Rev. A
101
,
022308
(
2020
).
9.
X.
Xu
and
M. H.
Ansari
, “
ZZ freedom in two-qubit gates
,”
Phys. Rev. Appl.
15
,
064074
(
2021
).
10.
M. C.
Collodo
,
A.
Potočnik
,
S.
Gasparinetti
 et al, “
Observation of the crossover from photon ordering to delocalization in tunably coupled resonators
,”
Phys. Rev. Lett.
122
,
183601
(
2019
).
11.
Y.
Sung
,
L.
Ding
,
J.
Braumüller
 et al, “
Realization of high-fidelity CZ and ZZ-free iSWAP gates with a tunable coupler
,”
Phys. Rev. X
11
,
021058
(
2021
).
12.
M.
Khazali
and
K.
Mølmer
, “
Fast multiqubit gates by adiabatic evolution in interacting excited-state manifolds of Rydberg atoms and superconducting circuits
,”
Phys. Rev. X
10
,
021054
(
2020
).
13.
Y.
Wu
,
W.-S.
Bao
,
S.
Cao
 et al, “
Strong quantum computational advantage using a superconducting quantum processor
,”
Phys. Rev. Lett.
127
,
180501
(
2021
).
14.
A.
Fedorov
,
L.
Steffen
,
M.
Baur
,
M. P.
Da Silva
, and
A.
Wallraff
, “
Implementation of a Toffoli gate with superconducting circuits
,”
Nature
481
(
7380
),
170
172
(
2012
).
15.
A. D.
Hill
,
M. J.
Hodson
,
N.
Didier
, and
M. J.
Reagor
, “
Realization of arbitrary doubly-controlled quantum phase gates
,” arXiv:2108.01652 [quant-ph]] (
2021
).
16.
Y.
Kim
,
A.
Morvan
,
L. B.
Nguyen
 et al, “
High-fidelity iToffoli gate for fixed-frequency superconducting qubits
,” arXiv:2108.10288 [quant-ph]] (
2021
).
17.
M. C.
Collodo
,
J.
Herrmann
,
N.
Lacroix
 et al, “
Implementation of conditional phase gates based on tunable ZZ interactions
,”
Phys. Rev. Lett.
125
,
240502
(
2020
).
18.
P.
Jurcevic
,
A.
Javadi-Abhari
,
L. S.
Bishop
 et al, “
Demonstration of quantum volume 64 on a superconducting quantum computing system
,”
Quantum Sci. Technol.
6
(
2
),
025020
(
2021
).
19.
E. A.
Sete
,
A. Q.
Chen
,
R.
Manenti
,
S.
Kulshreshtha
, and
S.
Poletto
, “
Floating tunable coupler for scalable quantum computing architectures
,”
Phys. Rev. Appl.
15
,
064063
(
2021
).
20.
S. E.
Nigg
and
S. M.
Girvin
, “
Stabilizer quantum error correction toolbox for superconducting qubits
,”
Phys. Rev. Lett.
110
,
243604
(
2013
).
21.
B.
Royer
,
S.
Puri
, and
A.
Blais
, “
Qubit parity measurement by parametric driving in circuit QED
,”
Sci. Adv.
4
(
11
),
1695
(
2018
).
22.
M.
Sameti
and
M. J.
Hartmann
, “
Floquet engineering in superconducting circuits: From arbitrary spin–spin interactions to the Kitaev honeycomb model
,”
Phys. Rev. A
99
,
012333
(
2019
).
23.
J.
Jin
,
D.
Rossini
,
R.
Fazio
,
M.
Leib
, and
M. J.
Hartmann
, “
Photon solid phases in driven arrays of nonlinearly coupled cavities
,”
Phys. Rev. Lett.
110
,
163605
(
2013
).
24.
Y.
Chen
,
C.
Neill
,
P.
Roushan
 et al, “
Qubit architecture with high coherence and fast tunable coupling
,”
Phys. Rev. Lett.
113
,
220502
(
2014
).
25.
F.
Yan
,
P.
Krantz
,
Y.
Sung
 et al, “
Tunable coupling scheme for implementing high-fidelity two-qubit gates
,”
Phys. Rev. Appl.
10
,
054062
(
2018
).
26.
X.
Li
,
T.
Cai
,
H.
Yan
 et al, “
Tunable coupler for realizing a controlled-phase gate with dynamically decoupled regime in a superconducting circuit
,”
Phys. Rev. Appl.
14
,
024070
(
2020
).
27.
J. M.
Chow
,
A. D.
Córcoles
,
J. M.
Gambetta
 et al, “
Simple all-microwave entangling gate for fixed-frequency superconducting qubits
,”
Phys. Rev. Lett.
107
,
080502
(
2011
).
28.
J.
Majer
,
J. M.
Chow
,
J. M.
Gambetta
 et al, “
Coupling superconducting qubits via a cavity bus
,”
Nature
449
(
7161
),
443
447
(
2007
).
29.
J.
Koch
,
T. M.
Yu
,
J.
Gambetta
 et al, “
Charge-insensitive qubit design derived from the Cooper pair box
,”
Phys. Rev. A
76
,
042319
(
2007
).
30.
S.
Bravyi
,
D. P.
DiVincenzo
, and
D.
Loss
, “
Schrieffer–Wolff transformation for quantum many-body systems
,”
Ann. Phys.
326
(
10
),
2793
2826
(
2011
).
31.
G.
Zhu
,
D. G.
Ferguson
,
V. E.
Manucharyan
, and
J.
Koch
, “
Circuit QED with fluxonium qubits: Theory of the dispersive regime
,”
Phys. Rev. B
87
,
024510
(
2013
).
32.
R.
Cleve
and
D. P.
DiVincenzo
, “
Schumacher's quantum data compression as a quantum computation
,”
Phys. Rev. A
54
,
2636
2650
(
1996
).
33.
J. R.
Johansson
,
P. D.
Nation
, and
F.
Nori
, “
Qutip: An open-source Python framework for the dynamics of open quantum systems
,”
Comput. Phys. Commun.
183
(
8
),
1760
1772
(
2012
).
34.
N.
Wittler
,
F.
Roy
,
K.
Pack
 et al, “
Integrated tool set for control, calibration, and characterization of quantum devices applied to superconducting qubits
,”
Phys. Rev. Appl.
15
,
034080
(
2021
).
35.
F.
Motzoi
,
J. M.
Gambetta
,
P.
Rebentrost
, and
F. K.
Wilhelm
, “
Simple pulses for elimination of leakage in weakly nonlinear qubits
,”
Phys. Rev. Lett.
103
,
110501
(
2009
).
36.
D. C.
McKay
,
S.
Filipp
,
A.
Mezzacapo
 et al, “
Universal gate for fixed-frequency qubits via a tunable bus
,”
Phys. Rev. Appl.
6
,
064007
(
2016
).
37.
M.
Sameti
,
A.
Potočnik
,
D. E.
Browne
,
A.
Wallraff
, and
M. J.
Hartmann
, “
Superconducting quantum simulator for topological order and the Toric code
,”
Phys. Rev. A
95
,
042330
(
2017
).
38.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information: 10th Anniversary Edition
, 10th ed. (
Cambridge University Press
,
2011
).
39.
A.
Barenco
,
C. H.
Bennett
,
R.
Cleve
 et al, “
Elementary gates for quantum computation
,”
Phys. Rev. A
52
,
3457
3467
(
1995
).
40.
A. M.
Steane
, “
Error correcting codes in quantum theory
,”
Phys. Rev. Lett.
77
,
793
797
(
1996
).
41.
N.
Chancellor
,
S.
Zohren
, and
P. A.
Warburton
, “
Circuit design for multi-body interactions in superconducting quantum annealing systems with applications to a scalable architecture
,”
npj Quantum Inf.
3
(
1
),
1
6
(
2017
).

Supplementary Material

You do not currently have access to this content.