We utilize a frequency-modulated charge pumping methodology to measure quickly and conveniently single “charge per cycle” in highly scaled Si/SiO2 metal–oxide–semiconductor field effect transistors. This is indicative of detection and manipulation of a single interface trap spin species located at the boundary between the SiO2 gate dielectric and Si substrate (almost certainly a Pb type center). This demonstration in sub-micrometer devices in which Dennard scaling of the gate oxide has yielded extremely large gate oxide leakage currents eliminates interference between the charge pumping current and the leakage phenomenon. The result is the ability to measure single trap charge pumping reliably and easily, which would otherwise be completely inaccessible due to oxide leakage. This work provides a unique and readily available avenue for single spin species detection and manipulation, which can be applied as a quantized standard of electrical current as well as to serve as a potentially useful platform for developing quantum engineering technologies. Finally, we discuss potential underlying physical mechanisms that are involved in producing a seemingly contradictory measure of both odd and even integer values for charge per cycle.

1.
P. M.
Lenahan
,
Microelectron. Eng.
69
,
173
(
2003
).
2.
D. M.
Fleetwood
,
P. S.
Winokur
,
R. A.
Reber
,
T. L.
Meisenheimer
,
J. R.
Schwank
,
M. R.
Shaneyfelt
, and
L. C.
Riewe
,
J. Appl. Phys.
73
,
5058
(
1993
).
3.
E. H.
Nicollian
and
J. R.
Brews
,
MOS (Metal Oxide Semiconductor) Physics and Technology
(
John Wiley & Sons
,
New York
,
2002
).
4.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
(
John Wiley & Sons
,
Hoboken
,
2015
).
5.
J.
Franco
,
B.
Kaczer
,
M.
Toledano-Luque
,
P. J.
Roussel
,
J.
Mitard
,
L. Å.
Ragnarsson
,
L.
Witters
,
T.
Chiarella
,
M.
Togo
,
N.
Horiguchi
,
G.
Groeseneken
,
M. F.
Bukhori
,
T.
Grasser
, and
A.
Asenov
, in
IEEE International Reliability Physics Symposium Proceedings
(
IEEE
,
2012
), p.
1
.
6.
T.
Grasser
,
Microelectron. Reliab.
52
,
39
(
2012
).
7.
K. K.
Hung
,
P. K.
Ko
,
C.
Hu
, and
Y. C.
Cheng
,
IEEE Electron Device Lett.
11
,
90
(
1990
).
8.
M. J.
Uren
,
D. J.
Day
, and
M. J.
Kirton
,
Appl. Phys. Lett.
47
,
1195
(
1985
).
9.
J. P.
Campbell
,
J.
Qin
,
K. P.
Cheung
,
L. C.
Yu
,
J. S.
Suehle
,
A.
Oates
, and
K.
Sheng
, in
IEEE International Reliability Physics Symposium Proceedings
(
IEEE
,
2009
), p.
382
.
10.
G.
Groeseneken
,
H. E.
Maes
,
N.
Beltran
, and
R. F. D. E.
Keersmaecker
,
IEEE Trans. Electron Devices
31
,
42
(
1984
).
11.
A. B. M.
Elliot
,
Solid State Electron.
19
,
241
(
1976
).
12.
S. J.
Brugler
and
P. G.
Jespers
,
IEEE Trans. Electron Devices
16
,
297
(
1969
).
13.
S. S.
Chung
,
S. J.
Chen
,
C. K.
Yang
,
S. M.
Cheng
,
S. H.
Lin
,
Y. C.
Sheng
,
H. S.
Lin
,
K. T.
Hung
,
D. Y.
Wu
,
T. R.
Yew
,
S. C.
Chien
,
F. T.
Liou
, and
F.
Wen
, in
IEEE Symposium on VLSI Circuits, Digest of Technical Papers
(
IEEE
,
2002
), p.
74
.
14.
D. J.
Fitzgerald
and
A. S.
Grove
,
Surf. Sci.
9
,
347
(
1968
).
15.
A. S.
Grove
,
Physics and Technology of Semiconductor Devices
(
John Wiley & Sons
,
Berkeley
,
1967
).
16.
J. T.
Ryan
,
J. P.
Campbell
,
J. S.
Suehle
, and
K. P.
Cheung
, in
Characterization and Metrology for Nanoelectronics and Nanostructures
(
Pan Stanford Publishing
,
Boca Raton, FL
,
2016
).
17.
J. T.
Ryan
,
L. C.
Yu
,
J. H.
Han
,
J. J.
Kopanski
,
K. P.
Cheung
,
F.
Zhang
,
C.
Wang
,
J. P.
Campbell
, and
J. S.
Suehle
,
Appl. Phys. Lett.
98
,
233502
(
2011
).
18.
G.
van den bosch
,
G. V.
Groeseneken
,
P.
Heremans
, and
H. E.
Maes
,
IEEE Trans. Electron Devices
38
,
1820
(
1991
).
19.
N. S.
Saks
and
M. G.
Ancona
,
IEEE Electron Device Lett.
11
,
339
(
1990
).
20.
J. T.
Ryan
,
A.
Matsuda
,
J. P.
Campbell
, and
K. P.
Cheung
,
Appl. Phys. Lett.
106
,
163503
(
2015
).
21.
J. T.
Ryan
,
J.
Zou
,
R.
Southwick
,
J. P.
Campbell
,
K. P.
Cheung
,
A. S.
Oates
, and
R.
Huang
,
IEEE Trans. Electron Devices
62
,
769
(
2015
).
22.
J. T.
Ryan
,
R.
Southwick
,
J. P.
Campbell
,
K. P.
Cheung
,
A. S.
Oates
, and
J. S.
Suehle
,
IEEE Electron Device Lett.
1
,
2251315
(
2013
).
23.
P.
Masson
,
J. L.
Autran
, and
J.
Brini
,
IEEE Electron Device Lett.
20
,
92
(
1999
).
24.
L.
Lin
,
Z.
Ji
,
J. F.
Zhang
,
W. D.
Zhang
,
B.
Kaczer
,
S.
de Gendt
, and
G.
Groeseneken
,
IEEE Trans. Electron Devices
58
,
2122263
(
2011
).
25.
R.
Fernández
,
B.
Kaczer
,
A.
Nackaerts
,
S.
Demuynck
,
R.
Rodríguez
,
M.
Nafría
, and
G.
Groeseneken
, in
Technical Digest-International Electron Devices Meeting
, IEDM (
2006
).
26.
M.
Cho
,
B.
Kaczer
,
M.
Aoulaiche
,
R.
Degraeve
,
P.
Roussel
,
J.
Franco
,
T.
Kauerauf
,
L. Å.
Ragnarsson
,
T. Y.
Hoffmann
, and
G.
Groeseneken
,
IEEE Trans. Electron Devices
58
,
3342
(
2011
).
27.
G. T.
Sasse
and
J.
Schmitz
,
IEEE Trans. Electron Devices
55
,
3167
(
2008
).
28.
Y.
Wang
and
K. P.
Cheung
,
Appl. Phys. Lett.
91
,
133504
(
2007
).
29.
G. V.
Groeseneken
,
I.
de Wolf
,
R.
Bellens
, and
H. E.
Maes
,
IEEE Trans. Electron Devices
43
,
940
(
1996
).
30.
N. S.
Saks
,
G.
Groeseneken
, and
I.
Dewolf
,
Appl. Phys. Lett.
68
,
1383
(
1996
).
31.
N. S.
Saks
,
Appl. Phys. Lett.
70
,
3380
(
1997
).
32.
T.
Tsuchiya
and
Y.
Ono
,
Jpn. J. Appl. Phys., Part 1
54
,
04DC01
(
2015
).
33.
L.
Militaru
,
P.
Masson
, and
G.
Guegan
,
IEEE Electron Device Lett.
23
,
94
(
2002
).
34.
K. P.
Cheung
,
C.
Wang
, and
J. P.
Campbell
,
Micromachines
11
,
364
(
2020
).
35.
NIST
, 2018 CODATA Value: Elementary Charge-The NIST Reference on Constants, Units, and Uncertainty,
2018
.
36.
P. M.
Lenahan
,
J. Vac. Sci. Technol. B
16
,
2134
(
1998
).
37.
P. M.
Lenahan
and
P. V.
Dressendorfer
,
J. Appl. Phys.
55
,
3495
(
1984
).
38.
M. W.
Keller
,
Metrologia
45
,
102
(
2008
).
You do not currently have access to this content.