Deep level defects in wide bandgap semiconductors, whose response times are in the range of power converter switching times, can have a significant effect on converter efficiency. We use deep level transient spectroscopy (DLTS) to evaluate such defect levels in the n-drift layer of vertical gallium nitride (v-GaN) power diodes with VBD ∼ 1500 V. DLTS reveals three energy levels that are at ∼0.6 eV (highest density), ∼0.27 eV (lowest density), and ∼45 meV (a dopant level) from the conduction band. Dopant extraction from capacitance–voltage measurement tests (C–V) at multiple temperatures enables trap density evaluation, and the ∼0.6 eV trap has a density of 1.2 × 1015 cm−3. The 0.6 eV energy level and its density are similar to a defect that is known to cause current collapse in GaN based surface conducting devices (like high electron mobility transistors). Analysis of reverse bias currents over temperature in the v-GaN diodes indicates a predominant role of the same defect in determining reverse leakage current at high temperatures, reducing switching efficiency.

1.
H.
Morkoc
,
S.
Strite
,
G. B.
Gao
,
M. E.
Lin
,
B.
Sverdlov
, and
M.
Burns
,
J. Appl. Phys.
76
,
1363
(
1994
).
2.
B. J.
Baliga
,
J. Appl. Phys.
53
,
1759
(
1982
).
3.
M.
Bhatnagar
and
B. J.
Baliga
,
IEEE Trans. Electron Devices
40
,
645
(
1993
).
4.
K.
Shenai
,
R. S.
Scott
, and
B. J.
Baliga
,
IEEE Trans. Electron Devices
36
,
1811
(
1989
).
5.
U. K.
Mishra
,
P.
Parikh
, and
Y.-F.
Wu
,
Proc. IEEE
90
,
1022
(
2002
).
6.
T.
Kimoto
,
Jpn. J. Appl. Phys.
54
,
040103
(
2015
).
7.
T.
Kachi
,
Jpn. J. Appl. Phys.
53
,
100210
(
2014
).
8.
H. A.
Moghadam
,
S.
Dimitrijev
,
J.
Han
,
D.
Haasmann
, and
A.
Aminbeidokhti
,
IEEE Trans. Electron Devices
62
(
8
),
2670
(
2015
).
9.
P.
Pande
,
S.
Dimitrijev
,
D.
Haasmann
,
H. A.
Moghadam
 et al,
Solid-State Electron.
171
,
107874
(
2020
).
10.
M.
Saremi
,
R.
Hathwar
,
M.
Dutta
,
F. A. M.
Koeck
,
R. J.
Nemanich
,
S.
Chowdhury
, and
S. M.
Goodnick
,
Appl. Phys. Lett.
111
,
043507
(
2017
).
11.
M.
Saremi
, “
Modeling and simulation of the programmable metallization cells (PMCs) and diamond-based power devices
,” Ph.D. dissertation (
Arizona State University
,
2017
).
12.
S.
Nakamura
,
M.
Senoh
,
S.
Nagahama
,
N.
Iwasa
,
T.
Yamada
,
T.
Matsushita
,
H.
Kiyoku
,
Y.
Sugimoto
,
T.
Kozaki
, and
H.
Umemoto
,
Jpn. J. Appl. Phys.
37
(
3B
),
L309
(
1998
).
13.
S.
Tomiya
,
T.
Hino
,
S.
Goto
,
M.
Takeya
, and
M.
Ikeda
,
IEEE J. Sel. Top. Quantum Electron.
10
,
1277
(
2004
).
14.
D. V.
Lang
,
J. Appl. Phys.
45
,
3023
(
1974
).
15.
I. C.
Kizilyalli
,
A. P.
Edwards
,
O.
Aktas
,
T.
Prunty
, and
D.
Bour
,
IEEE Trans. Electron Devices
62
,
414
(
2015
).
16.
I. C.
Kizilyalli
,
A. P.
Edwards
,
H.
Nie
,
D.
Bour
,
T.
Prunty
, and
D.
Disney
,
IEEE Electron Device Lett.
35
,
247
(
2014
).
17.
I. C.
Kizilyalli
,
A. P.
Edwards
,
H.
Nie
,
D.
Disney
, and
D.
Bour
,
IEEE Trans. Electron Devices
60
,
3067
(
2013
).
18.
J.
Hilibrand
and R. D. Gold,
RCA Rev.
21
,
245
(
1960
), see https://worldradiohistory.com/ARCHIVE-RCA/RCA-Review/RCA-Review-1960-Jun.pdf, pg. 97.
19.
A. R.
Arehart
,
A.
Sasikumar
,
G.
Via
,
B.
Winningham
,
B.
Poling
,
E.
Heller
, and
S. A.
Ringel
, in
2010 IEDM Technical Digest
(
IEEE
,
2010
), p.
20.1.1
.
20.
A.
Sasikumar
,
A.
Arehart
,
S.
Kolluri
,
M. H.
Wong
,
S.
Keller
,
S. P.
DenBaars
,
J. S.
Speck
,
U. K.
Mishra
, and
S. A.
Ringel
,
IEEE Electron Device Lett.
33
,
658
(
2012
).
21.
J.
Joh
and
J.
del Alamo
,
IEEE Trans. Electron Devices
58
,
132
(
2011
).
22.
Y.
Sin
,
B.
Foran
,
J.
Joh
, and
J.
del Alamo
,
Phys. Status Solidi A
208
,
1611
(
2011
).
23.
A.
Chini
,
V.
di Lecce
,
M.
Esposto
,
G.
Meneghesso
, and
E.
Zanoni
,
IEEE Electron Device Lett.
30
,
1021
(
2009
).
24.
T.
Narita
,
M.
Horita
,
K.
Tomita
,
T.
Kachi
, and
J.
Suda
,
Jpn. J. Appl. Phys.
59
(
10
),
105505
(
2020
).
25.
Y.
Zhang
,
Z.
Chen
,
W.
Li
,
H.
Lee
,
M. R.
Karim
,
A. R.
Arehart
,
S. A.
Ringel
,
S.
Rajan
, and
H.
Zhao
,
J. Appl. Phys.
127
,
215707
(
2020
).
26.
A. K.
Jonscher
,
Thin Solid Films
1
(
3
),
213
(
1967
).
You do not currently have access to this content.