Precise sensing of microfluidic flow is essential to advancing lab-on-a-chip development and the downstream medical applications. Contactless microfluidic flow interrogation is noninvasive, nonperturbative, and fouling-free. However, known real non-contact flow sensing technologies are limited to quantifying bulk fluids. Here, we develop an electrical approach to contactless quantification of aqueous microfluidic flow. We found that the electric potential generated by the ubiquitous contact electrification of a microfluidic flow with fluidic channel walls is interrogatable by using a probe electrode at a distance over centimeters from the microfluidic flow, and the measured voltage response demonstrates linear relationship to the microfluidic flow rate with a resolution of sub-microliter per minute (in a 1-Hz bandwidth), providing an ideal, high-precision contactless flow transduction pathway. In addition to this primary finding, by using a monolayer-graphene coated probe electrode, in comparison with a typical bare probe electrode, an overall enhancement in flow-sensory resolution of 36.4% is attained.

1.
J.
Etxebarria
,
J.
Berganzo
,
J.
Elizalde
,
G.
Llamazares
,
L. J.
Fernández
, and
A.
Ezkerra
,
Sens. Actuators, B
235
,
188
196
(
2016
).
2.
E.
Meng
,
P.-Y.
Li
, and
Y.-C.
Tai
,
Sens. Actuators, A
144
(
1
),
18
28
(
2008
).
3.
R. X.
He
,
P.
Lin
,
Z. K.
Liu
,
H. W.
Zhu
,
X. Z.
Zhao
,
H. L.
Chan
, and
F.
Yan
,
Nano Lett.
12
(
3
),
1404
1409
(
2012
).
4.
D. R.
Kim
,
C. H.
Lee
, and
X.
Zheng
,
Nano Lett.
9
(
5
),
1984
1988
(
2009
).
5.
X.
Li
,
M.-H.
Yeh
,
Z.-H.
Lin
,
H.
Guo
,
P.-K.
Yang
,
J.
Wang
,
S.
Wang
,
R.
Yu
,
T.
Zhang
, and
Z. L.
Wang
,
ACS Nano
9
(
11
),
11056
11063
(
2015
).
6.
J.
Yin
,
Z.
Zhang
,
X.
Li
,
J.
Yu
,
J.
Zhou
,
Y.
Chen
, and
W.
Guo
,
Nat. Commun.
5
(
1
),
3582
(
2014
).
7.
J.
Yin
,
X.
Li
,
J.
Yu
,
Z.
Zhang
,
J.
Zhou
, and
W.
Guo
,
Nat. Nanotechnol.
9
(
5
),
378
383
(
2014
).
8.
X.
Zhang
,
E.
Chia
,
X.
Fan
, and
J.
Ping
,
Nat. Commun.
12
(
1
),
1755
(
2021
).
9.
M. H.
Zarifi
,
H.
Sadabadi
,
S. H.
Hejazi
,
M.
Daneshmand
, and
A.
Sanati-Nezhad
,
Sci. Rep.
8
(
1
),
139
(
2018
).
10.
E.
Aydin
and
A. A.
Makinwa
, “
A low-field portable nuclear magnetic resonance (NMR) microfluidic flowmeter
,” in
2021 21st International Conference on Solid-State Sensors, Actuators, and Microsystems
(
IEEE
,
2021
), pp.
1020
1023
.
11.
B.
Halbedel
,
C.
Resagk
,
A.
Wegfrass
,
C.
Diethold
,
M.
Werner
,
F.
Hilbrunner
, and
A.
Thess
,
Flow, Turbul. Combust.
92
(
1
),
361
369
(
2014
).
12.
A.
Lay-Ekuakille
,
P.
Vergallo
,
G.
Griffo
, and
R.
Morello
,
Measurement
47
,
1008
1015
(
2014
).
13.
S.
Vasilyan
and
T.
Froehlich
,
Appl. Phys. Lett.
105
(
22
),
223510
(
2014
).
14.
C.-C.
Huang
,
H.-L.
Chou
, and
P.-Y.
Chen
,
Ultrasound Med. Biol.
41
(
2
),
565
573
(
2015
).
15.
B.
Bourlon
,
J.
Wong
,
C.
Mikó
,
L.
Forró
, and
M.
Bockrath
,
Nat. Nanotechnol.
2
(
2
),
104
(
2007
).
16.
Y.
Chen
,
D.
Liang
,
X. P.
Gao
, and
J. I. D.
Alexander
,
Nano Lett.
13
(
8
),
3953
3957
(
2013
).
17.
B.
Son
,
J.-Y.
Park
,
S.
Lee
, and
Y.
Ahn
,
Nanoscale
7
(
37
),
15421
15426
(
2015
).
18.
L.
Zhang
,
X.
Yu
,
S.
You
,
H.
Liu
,
C.
Zhang
,
B.
Cai
,
L.
Xiao
,
W.
Liu
,
S.
Guo
, and
X.
Zhao
,
Appl. Phys. Lett.
107
(
24
),
242901
(
2015
).
19.
S. J.
Ling
,
J.
Sanny
,
W.
Moebs
, et al. 
University Physics
(
OpenStax
,
2016
), Vol. 2.
20.
M.
Wang
and
Q.
Kang
,
Microfluid. Nanofluid.
9
(
2
),
181
190
(
2010
).
21.
Ł.
Zych
,
A. M.
Osyczka
,
A.
Łacz
,
A.
Różycka
,
W.
Niemiec
,
A.
Rapacz-Kmita
,
E.
Dzierzkowska
, and
E.
Stodolak-Zych
,
Materials
14
(
4
),
843
(
2021
).
22.
F.
Schedin
,
A. K.
Geim
,
S. V.
Morozov
,
E.
Hill
,
P.
Blake
,
M.
Katsnelson
, and
K. S.
Novoselov
,
Nat. Mater.
6
(
9
),
652
655
(
2007
).
23.
W.
Yang
,
K. R.
Ratinac
,
S. P.
Ringer
,
P.
Thordarson
,
J. J.
Gooding
, and
F.
Braet
,
Angew. Chem. Int. Ed.
49
(
12
),
2114
2138
(
2010
).
24.
B.
Goldsmith
,
Y.
Lu
,
Z.
Luo
, and
A.
Johnson
,
Phys. Status Solidi RRL
3
(
6
),
178
180
(
2009
).
25.
I.
Heller
,
S.
Chatoor
,
J.
Männik
,
M. A.
Zevenbergen
,
J. B.
Oostinga
,
A. F.
Morpurgo
,
C.
Dekker
, and
S. G.
Lemay
,
Nano Lett.
10
(
5
),
1563
1567
(
2010
).

Supplementary Material

You do not currently have access to this content.