We report the demonstration of an all-optical self-sustained cell-based microwave feedback oscillator. In this scheme, a microwave resonance, optically induced in a buffer-gas filled vapor cell resonator through coherent population trapping (CPT), is detected by a fast photodiode, amplified, and used to drive back, through a frequency divider, a Mach–Zehnder electro-optic modulator in a sustaining loop configuration. The total gain and phase of the system was measured in an open-loop configuration with a network analyzer. In good agreement with values predicted by the Leeson effect, the CPT feedback oscillator demonstrates an absolute phase noise of −24 dB rad2/Hz at 1 Hz offset frequency, compatible with a fractional frequency stability of 8 × 10−12 at 1 s, and a phase noise floor of −112 dB rad2/Hz, limited by the low microwave power available at the photodiode output. The amplitude noise of the oscillator shows a comparable noise floor and, for offset frequencies lower than 200 Hz, a 1/f dependence, due to the presence of the frequency divider in the loop.

1.
G.
Alzetta
,
A.
Gozzini
,
L.
Moi
, and
G.
Orriols
, “
An experimental method for the observation of r.f. transitions and laser beat resonances in oriented Na vapour
,”
Nuovo Cimento B
36
,
5
20
(
1976
).
2.
E.
Arimondo
, “
Coherent population trapping in laser spectroscopy
,”
Prog. Opt.
35
,
257
354
(
1996
).
3.
R.
Wynands
and
A.
Nagel
, “
Precision spectroscopy with coherent dark states
,”
Appl. Phys. B
68
,
1
25
(
1999
).
4.
J.
Vanier
, “
Atomic clocks based on coherent population trapping: A review
,”
Appl. Phys. B
81
,
421
(
2005
).
5.
P.
Yun
,
F.
Tricot
,
C. E.
Calosso
,
S.
Micalizio
,
B.
Francois
,
R.
Boudot
,
S.
Guérandel
, and
E.
de Clercq
, “
High-performance coherent population trapping clock with polarization modulation
,”
Phys. Rev. Appl.
7
,
014018
(
2017
).
6.
X.
Liu
,
E.
Ivanov
,
V. I.
Yudin
,
J.
Kitching
, and
E. A.
Donley
, “
Low-drift coherent population trapping clock based on laser-cooled atoms and high-coherence excitation fields
,”
Phys. Rev. Appl.
8
,
054001
(
2017
).
7.
M.
Abdel Hafiz
,
G.
Coget
,
M.
Petersen
,
C. E.
Calosso
,
S.
Guérandel
,
E.
De Clercq
, and
R.
Boudot
, “
Symmetric autobalanced Ramsey interrogation for high-performance coherent population-trapping vapor-cell atomic clock
,”
Appl. Phys. Lett.
112
,
244102
(
2018
).
8.
P.
Yun
,
Q.
Li
,
Q.
Hao
,
G.
Liu
,
E.
de Clercq
,
S.
Guérandel
,
X.
Liu
,
S.
Gu
,
Y.
Gao
, and
S.
Zhang
, “
High-performance coherent population trapping atomic clock with direct-modulation distributed Bragg reflector laser
,”
Metrologia
58
,
045001
(
2021
).
9.
P. D. D.
Schwindt
,
S.
Knappe
,
V.
Shah
,
L.
Hollberg
, and
J.
Kitching
, “
Chip-scale atomic magnetometer
,”
Appl. Phys. Lett.
85
(
26
),
6409
6411
(
2004
).
10.
E.
Breschi
,
Z. D.
Gruji
,
P.
Knowles
, and
A.
Weis
, “
A high-sensitivity push-pull magnetometer
,”
Appl. Phys. Lett.
104
,
023501
(
2014
).
11.
M.
Bajcsy
,
A. S.
Zibrov
, and
M. D.
Lukin
, “
Stationary pulses of light in an atomic medium
,”
Nature
426
,
638
641
(
2003
).
12.
A.
Aspect
,
E.
Arimondo
,
R.
Kaizer
,
N.
Vansteenkiste
, and
C.
Cohen-Tannoudji
, “
Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping: Theoretical analysis
,”
J. Opt. Soc. Am. B
6
,
2112
2124
(
1989
).
13.
J.
Vanier
and
C.
Audoin
,
The Quantum Physics of Atomic Frequency Standards
(
Adam-Hilger
,
1989
), Vol.
1
.
14.
A.
Godone
,
F.
Levi
,
S.
Micalizio
, and
C.
Calosso
, “
Coherent-population-trapping maser: Noise spectrum and frequency stability
,”
Phys. Rev. A
70
,
012508
(
2004
).
15.
N.
Vukicevic
,
A. S.
Zibrov
,
L.
Hollberg
,
F. L.
Walls
,
J.
Kitching
, and
H. G.
Robinson
, “
Compact diode-laser based rubidium frequency reference
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control.
47
(
5
),
1122
1126
(
2000
).
16.
L.
Balet
,
J.
Haesler
, and
S.
Lecomte
, “
VCSEL-based Raman frequency reference on Rubidium atoms
,” in
Proceedings of 2012 European Frequency and Time Forum
(
IEEE
,
2012
), pp.
316
319
.
17.
D.
Strekalov
,
D.
Aveline
,
N.
Yu
,
R.
Thompson
,
A. B.
Matsko
, and
L.
Maleki
, “
Stabilizing an optoelectronic microwave oscillator with photonic filters
,”
IEEE J. Lightwave Technol.
21
(
12
),
3052
3061
(
2003
).
18.
A. B.
Matsko
,
D.
Strekalov
, and
L.
Maleki
, “
Magnetometer based on the optoelectronic oscillator
,”
Opt. Commun.
247
,
141
(
2005
).
19.
D.
Strekalov
,
A. B.
Matsko
,
N.
Yu
,
A. A.
Savchenkov
, and
L.
Maleki
, “
Application of vertical cavity surface emitting lasers in self-oscillating atomic clocks
,”
J. Mod. Opt.
53
(
16–17
),
2469
2484
(
2006
).
20.
D.
Strekalov
,
A. A.
Savchenkov
,
A.
Matsko
,
N.
Yu
, and
L.
Maleki
, “
All-optical atomic clock on a chip: Progress report
,” in
2004 IEEE International Ultrasonics, Ferroelectrics and Frequency Control Joint 50th Anniversary Conference
, Montreal, Canada (
IEEE
,
2004
), pp.
104
108
.
21.
S. H.
Yim
and
D.
Cho
, “
Oscillator-free atomic clock using a multimode laser
,”
Appl. Phys. Lett.
96
,
211119
(
2010
).
22.
S. H.
Yim
and
D.
Cho
, “
Optelectronic oscillator stabilized to an intra-loop atomic filter with a coherent population trapping resonance
,”
J. Korean Phys. Soc.
61
(
1
),
17
21
(
2012
).
23.
X. S.
Yao
and
L.
Maleki
, “
Optoelectronic microwave oscillator
,”
J. Opt. Soc. Am. B
13
(
8
),
1725
1735
(
1996
).
24.
M.
Li
,
T.
Hao
,
W.
Li
, and
Y.
Dai
, “
Tutorial on optoelectronic oscillators
,”
APL Photonics
6
,
061101
(
2021
).
25.
D. B.
Leeson
, “
A simple model of feedback oscillator noise spectrum
,”
Proc. IEEE
54
(
2
),
329
330
(
1966
).
26.
E.
Rubiola
,
Phase Noise and Frequency Stability in Oscillators
(
Cambridge University Press
,
2008
).
27.
M.
Abdel Hafiz
,
G.
Coget
,
E.
de Clercq
, and
R.
Boudot
, “
Doppler-free spectroscopy on the Cs D1 line with a dual-frequency laser
,”
Opt. Lett.
41
,
2982
(
2016
).
28.
D.
Brazhnikov
,
M.
Petersen
,
G.
Coget
,
N.
Passilly
,
V.
Maurice
,
C.
Gorecki
, and
R.
Boudot
, “
Dual-frequency sub-Doppler spectroscopy: Extended theoretical model and microcell-based experiments
,”
Phys. Rev. A
99
,
062508
(
2019
).
29.
Y. Y.
Jau
,
E.
Miron
,
A. B.
Post
,
N. N.
Kuzma
, and
W.
Happer
, “
Push-pull optical pumping of pure superposition states
,”
Phys. Rev. Lett.
93
,
160802
(
2004
).
30.
X.
Liu
,
J. M.
Merolla
,
S.
Guérandel
,
C.
Gorecki
,
E.
de Clercq
, and
R.
Boudot
, “
Coherent-population-trapping resonances in buffer-gas-filled Cs-vapor cells with push-pull optical pumping
,”
Phys. Rev. A
87
,
013416
(
2013
).
31.
R.
Boudot
and
E.
Rubiola
, “
Phase noise in RF and microwave amplifiers
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
59
(
12
),
2613
2624
(
2012
).
32.
K.
Volyansky
,
J.
Cussey
,
H.
Tavernier
,
P.
Salzentein
,
G.
Sauvage
,
L.
Larger
, and
E.
Rubiola
, “
Applications of the optical fiber to the generation and measurement of low-phase-noise microwave signals
,”
J. Opt. Soc. Am. B
25
(
12
),
2140
2150
(
2008
).
33.
S.
Barke
,
M.
Trobs
,
B.
Sheard
,
G.
Heinzel
, and
K.
Danzmann
, “
EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA
,”
Appl. Phys. B
98
,
33
39
(
2010
).
34.
E. N.
Ivanov
and
M. E.
Tobar
, “
Low phase-noise sapphire crystal microwave oscillators: Current status
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
56
(
2
),
263
269
(
2009
).
35.
L.
Maleki
, “
The optoelectronic oscillator
,”
Nat. Photonics
5
,
728
730
(
2011
).
36.
T. M.
Fortier
,
F.
Quinlan
,
A.
Hati
,
C.
Nelson
,
J. A.
Taylor
,
Y.
Fu
,
J.
Campbell
, and
S. A.
Diddams
, “
Photonic microwave generation with high-power photodiodes
,”
Opt. Lett.
38
(
10
),
1712
1714
(
2013
).
37.
E.
Rubiola
and
R.
Brendel
, “
A generalization of the Leeson effect
,” arXiv:1004.5539v1 (
2010
).
You do not currently have access to this content.