Superconducting qubits have emerged as a potentially foundational platform technology for addressing complex computational problems deemed intractable with classical computing. Despite recent advances enabling multiqubit designs that exhibit coherence lifetimes on the order of hundreds of μs, material quality and interfacial structures continue to curb device performance. Two-level system defects in the thin superconducting film and adjacent dielectric regions introduce stochastic noise and dissipate electromagnetic energy at the cryogenic operating temperatures. In this study, we utilize time-of-flight secondary ion mass spectrometry to understand the role specific fabrication procedures play in introducing such dissipation mechanisms in these complex systems. We interrogated Nb thin films and transmon qubit structures fabricated through slight modifications in the processing and vacuum conditions. We find that when the Nb film is sputtered onto the Si substrate, oxide and silicide regions are generated at various interfaces. We also observe that impurity species, such as niobium hydrides and carbides, are incorporated within the niobium layer during the subsequent lithographic patterning steps. The formation of these resistive compounds likely impacts the superconducting properties of the Nb thin film. Additionally, we observe the presence of halogen species distributed throughout the patterned thin films. We conclude by hypothesizing the source of such impurities in these structures in an effort to intelligently fabricate superconducting qubits and extend coherence times moving forward.

1.
M.
Kjaergaard
,
M. E.
Schwartz
,
J.
Braumüller
,
P.
Krantz
,
J. I.-J.
Wang
,
S.
Gustavsson
, and
W. D.
Oliver
, “
Superconducting qubits: Current state of play
,”
Annu. Rev. Condens. Matter Phys.
11
,
369
395
(
2020
).
2.
G.
Wendin
, “
Quantum information processing with superconducting circuits: A review
,”
Rep. Prog. Phys.
80
,
106001
(
2017
).
3.
N. P.
de Leon
,
K. M.
Itoh
,
D.
Kim
,
K. K.
Mehta
,
T. E.
Northup
,
H.
Paik
,
B. S.
Palmer
,
N.
Samarth
,
S.
Sangtawesin
, and
D. W.
Steuerman
, “
Materials challenges and opportunities for quantum computing hardware
,”
Science
372
,
eabb2823
(
2021
).
4.
F.
Arute
,
K.
Arya
,
R.
Babbush
,
D.
Bacon
,
J. C.
Bardin
,
R.
Barends
,
R.
Biswas
,
S.
Boixo
,
F.
Brandao
,
D. A.
Buell
,
B.
Burkett
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
,
R.
Collins
,
W.
Courtney
,
A.
Dunsworth
,
E.
Farhi
,
B.
Foxen
,
A.
Fowler
,
C.
Gidney
,
M.
Giustina
,
R.
Graff
,
K.
Guerin
,
S.
Habegger
,
M. P.
Harrigan
,
M. J.
Hartmann
,
A.
Ho
,
M.
Hoffmann
,
T.
Huang
,
T. S.
Humble
,
S. V.
Isakov
,
E.
Jeffrey
,
Z.
Jiang
,
D.
Kafri
,
K.
Kechedzhi
,
J.
Kelly
,
P. V.
Klimov
,
S.
Knysh
,
A.
Korotkov
,
F.
Kostritsa
,
D.
Landhuis
,
M.
Lindmark
,
E.
Lucero
,
D.
Lyakh
,
S.
Mandra
,
J. R.
McClean
,
M.
McEwen
,
A.
Megrant
,
X.
Mi
,
K.
Michielsen
,
M.
Mohseni
,
J.
Mutus
,
O.
Naaman
,
M.
Neeley
,
C.
Neill
,
M. Y.
Niu
,
E.
Ostby
,
A.
Petukhov
,
J. C.
Platt
,
C.
Quintana
,
E. G.
Rieffel
,
P.
Roushan
,
N. C.
Rubin
,
D.
Sank
,
K. J.
Satzinger
,
V.
Smelyanskiy
,
K. J.
Sung
,
M. D.
Trevithick
,
A.
Vainsencher
,
B.
Villalonga
,
T.
White
,
Z. J.
Yao
,
P.
Yeh
,
A.
Zalcman
,
H.
Neven
, and
J. M.
Martinis
, “
Quantum supremacy using a programmable superconducting processor
,”
Nature
574
,
505
510
(
2019
).
5.
P.
Jurcevic
,
A.
Javadi-Abhari
,
L. S.
Bishop
,
I.
Lauer
,
D. F.
Bogorin
,
M.
Brink
,
L.
Capelluto
,
O.
Günlük
,
T.
Itoko
,
N.
Kanazawa
,
A.
Kandala
,
G. A.
Keefe
,
K.
Krsulich
,
W.
Landers
,
E. P.
Lewandowski
,
D. T.
McClure
,
G.
Nannicini
,
A.
Narasgond
,
H. M.
Nayfeh
,
E.
Pritchett
,
M. B.
Rothwell
,
S.
Srinivasan
,
N.
Sundaresan
,
C.
Wang
,
K. X.
Wei
,
C. J.
Wood
,
J.-B.
Yau
,
E. J.
Zhang
,
O. E.
Dial
,
J. M.
Chow
, and
J. M.
Gambetta
, “
Demonstration of quantum volume 64 on a superconducting quantum computing system
,”
Quantum Sci. Technol.
6
,
025020
(
2021
).
6.
J. J.
Burnett
,
A.
Bengtsson
,
M.
Scigliuzzo
,
D.
Niepce
,
M.
Kudra
,
P.
Delsing
, and
J.
Bylander
, “
Decoherence benchmarking of superconducting qubits
,”
npj Quantum Inf.
5
,
54
(
2019
).
7.
S.
Schlör
,
J.
Lisenfeld
,
C.
Müller
,
A.
Bilmes
,
A.
Schneider
,
D. P.
Pappas
,
A. V.
Ustinov
, and
M.
Weides
, “
Correlating decoherence in transmon qubits: Low frequency noise by single fluctuators
,”
Phys. Rev. Lett.
123
,
190502
(
2019
).
8.
A.
Nersisyan
,
S.
Poletto
,
N.
Alidoust
,
R.
Manenti
,
R.
Renzas
,
C.-V.
Bui
,
K.
Vu
,
T.
Whyland
,
Y.
Mohan
,
E. A.
Sete
,
S.
Stanwyck
,
A.
Bestwick
, and
M.
Reagor
, “
Manufacturing low dissipation superconducting quantum processors
,” in
2019 IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2019
), pp.
31.1.1
31.1.4
.
9.
C.
Müller
,
J. H.
Cole
, and
J.
Lisenfeld
, “
Towards understanding two-level-systems in amorphous solids: Insights from quantum circuits
,”
Rep. Prog. Phys.
82
,
124501
(
2019
).
10.
D. P.
Pappas
,
M. R.
Vissers
,
D. S.
Wisbey
,
J. S.
Kline
, and
J.
Gao
, “
Two level system loss in superconducting microwave resonators
,”
IEEE Trans. Appl. Supercond.
21
,
871
874
(
2011
).
11.
C.
Wang
,
C.
Axline
,
Y. Y.
Gao
,
T.
Brecht
,
Y.
Chu
,
L.
Frunzio
,
M. H.
Devoret
, and
R. J.
Schoelkopf
, “
Surface participation and dielectric loss in superconducting qubits
,”
Appl. Phys. Lett.
107
,
162601
(
2015
).
12.
O.
Dial
,
D. T.
McClure
,
S.
Poletto
,
G. A.
Keefe
,
M. B.
Rothwell
,
J. M.
Gambetta
,
D. W.
Abraham
,
J. M.
Chow
, and
M.
Steffen
, “
Bulk and surface loss in superconducting transmon qubits
,”
Supercond. Sci. Technol.
29
,
044001
(
2016
).
13.
W.
Woods
,
G.
Calusine
,
A.
Melville
,
A.
Sevi
,
E.
Golden
,
D.
Kim
,
D.
Rosenberg
,
J.
Yoder
, and
W.
Oliver
, “
Determining interface dielectric losses in superconducting coplanar-waveguide resonators
,”
Phys. Rev. Appl.
12
,
014012
(
2019
).
14.
A. P.
Ehiasarian
,
J. G.
Wen
, and
I.
Petrov
, “
Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion
,”
J. Appl. Phys.
101
,
054301
(
2007
).
15.
G.
Wu
,
A.-M.
Valente
,
H.
Phillips
,
H.
Wang
,
A.
Wu
,
T.
Renk
, and
P.
Provencio
, “
Studies of niobium thin film produced by energetic vacuum deposition
,”
Thin Solid Films
489
,
56
62
(
2005
).
16.
M.
Krishnan
,
E.
Valderrama
,
B.
Bures
,
K.
Wilson-Elliott
,
X.
Zhao
,
L.
Phillips
,
A.-M.
Valente-Feliciano
,
J.
Spradlin
,
C.
Reece
, and
K.
Seo
, “
Very high residual resistivity ratios of heteroepitaxial superconducting niobium films on MgO substrates
,”
Supercond. Sci. Technol.
24
,
115002
(
2011
).
17.
A. J.
Annunziata
,
D. F.
Santavicca
,
L.
Frunzio
,
G.
Catelani
,
M. J.
Rooks
,
A.
Frydman
, and
D. E.
Prober
, “
Tunable superconducting nanoinductors
,”
Nanotechnology
21
,
445202
(
2010
).
18.
S. K.
Tolpygo
,
V.
Bolkhovsky
,
T. J.
Weir
,
L. M.
Johnson
,
M. A.
Gouker
, and
W. D.
Oliver
, “
Fabrication process and properties of fully-planarized deep-submicron Nb/Al–AIOX/Nb Josephson junctions for VLSI circuits
,”
IEEE Trans. Appl. Supercond.
25
,
1101312
(
2015
).
19.
Z.
Zhu
and
C. Y.
Cheng
, “
Solvent extraction technology for the separation and purification of niobium and tantalum: A review
,”
Hydrometallurgy
107
,
1
12
(
2011
).
20.
A.
Romanenko
,
R.
Pilipenko
,
S.
Zorzetti
,
D.
Frolov
,
M.
Awida
,
S.
Belomestnykh
,
S.
Posen
, and
A.
Grassellino
, “
Three-dimensional superconducting resonators at T < 20 mK with photon lifetimes up to τ = 2 s
,”
Phys. Rev. Appl.
13
,
034032
(
2020
).
21.
D.
Niepce
,
J. J.
Burnett
,
M. G.
Latorre
, and
J.
Bylander
, “
Geometric scaling of two-level-system loss in superconducting resonators
,”
Supercond. Sci. Technol.
33
,
025013
(
2020
).
22.
J.
Burnett
,
L.
Faoro
, and
T.
Lindström
, “
Analysis of high quality superconducting resonators: Consequences for TLS properties in amorphous oxides
,”
Supercond. Sci. Technol.
29
,
044008
(
2016
).
23.
A.
Premkumar
,
C.
Weiland
,
S.
Hwang
,
B.
Jäck
,
A. P. M.
Place
,
I.
Waluyo
,
A.
Hunt
,
V.
Bisogni
,
J.
Pelliciari
,
A.
Barbour
,
M. S.
Miller
,
P.
Russo
,
F.
Camino
,
K.
Kisslinger
,
X.
Tong
,
M. S.
Hybertsen
,
A. A.
Houck
, and
I.
Jarrige
, “
Microscopic relaxation channels in materials for superconducting qubits
,”
Commun. Mater.
2
,
72
(
2021
).
24.
J.
Verjauw
,
A.
Potočnik
,
M.
Mongillo
,
R.
Acharya
,
F.
Mohiyaddin
,
G.
Simion
,
A.
Pacco
,
T.
Ivanov
,
D.
Wan
,
A.
Vanleenhove
,
L.
Souriau
,
J.
Jussot
,
A.
Thiam
,
J.
Swerts
,
X.
Piao
,
S.
Couet
,
M.
Heyns
,
B.
Govoreanu
, and
I.
Radu
, “
Investigation of microwave loss induced by oxide regrowth in high-Q Nb resonators
,” arXiv:2012.10761 (
2020
).
25.
A.
Romanenko
,
F.
Barkov
,
L. D.
Cooley
, and
A.
Grassellino
, “
Proximity breakdown of hydrides in superconducting niobium cavities
,”
Supercond. Sci. Technol.
26
,
035003
(
2013
).
26.
J.
Lee
,
Z.
Sung
,
A. A.
Murthy
,
M.
Reagor
,
A.
Grassellino
, and
A.
Romanenko
, “
Discovery of Nb hydride precipitates in superconducting qubits
,” arXiv:2108.10385 (
2021
).
27.
M. R.
Vissers
,
J.
Gao
,
D. S.
Wisbey
,
D. A.
Hite
,
C. C.
Tsuei
,
A. D.
Corcoles
,
M.
Steffen
, and
D. P.
Pappas
, “
Low loss superconducting titanium nitride coplanar waveguide resonators
,”
Appl. Phys. Lett.
97
,
232509
(
2010
).
28.
A.
Bose
and
S. C.
Joshi
, “
Study of impurity distribution in mechanically polished, chemically treated and high vacuum degassed pure niobium samples using the TOF-SIMS technique
,”
Supercond. Sci. Technol.
28
,
075007
(
2015
).
29.
S.
Hofmann
, “
Cascade mixing limitations in sputter profiling
,”
J. Vac. Sci. Technol. B
10
,
316
322
(
1992
).
30.
S.
Prasad
and
A.
Paul
, “
Growth mechanism of phases by interdiffusion and diffusion of species in the niobium–silicon system
,”
Acta Mater.
59
,
1577
1585
(
2011
).
31.
S. M.
Ribet
,
A. A.
Murthy
,
E. W.
Roth
,
R.
dos Reis
, and
V. P.
Dravid
, “
Making the most of your electrons: Challenges and opportunities in characterizing hybrid interfaces with STEM
,”
Mater. Today
50
,
100
(
2021
).
32.
W. M.
van Huffelen
,
T. M.
Klapwijk
, and
L.
de Lange
, “
Nonequilibrium carrier transport in superconducting niobium-silicon heterostructures
,”
Phys. Rev. B
45
,
535
538
(
1992
).
33.
A.
Romanenko
and
D. I.
Schuster
, “
Understanding quality factor degradation in superconducting niobium cavities at low microwave field amplitudes
,”
Phys. Rev. Lett.
119
,
264801
(
2017
).
34.
Y.
Trenikhina
,
A.
Romanenko
,
J.
Kwon
,
J.-M.
Zuo
, and
J. F.
Zasadzinski
, “
Nanostructural features degrading the performance of superconducting radio frequency niobium cavities revealed by transmission electron microscopy and electron energy loss spectroscopy
,”
J. Appl. Phys.
117
,
154507
(
2015
).
35.
F.
Barkov
,
A.
Romanenko
,
Y.
Trenikhina
, and
A.
Grassellino
, “
Precipitation of hydrides in high purity niobium after different treatments
,”
J. Appl. Phys.
114
,
164904
(
2013
).
36.
A.
Bose
,
P.
Mondal
,
G.
Bhalerao
,
S.
Kokil
,
S.
Raghavendra
,
S.
Joshi
,
A.
Srivastava
, and
R.
Tewari
, “
Evolution of surface oxides and impurities in high vacuum heat treated Nb: A TEM and TOF-SIMS in situ study, mechanism and repercussions on SRF cavity applications
,”
Appl. Surf. Sci.
510
,
145464
(
2020
).
37.
A.
Romanenko
,
D.
Bafia
,
A.
Grassellino
,
M.
Martinello
, and
Y.
Trenikhina
, “
First direct imaging and profiling TOF-SIMS studies on cutouts from cavities prepared by state-of-the-art treatments
,” in
Proceedings of SRF'19, International Conference on RF Superconductivity
(
JACoW Publishing
,
Geneva, Switzerland
,
2019
), pp.
866
870
.
38.
A.
Bilmes
,
A. K.
Neumann
,
S.
Volosheniuk
,
A. V.
Ustinov
, and
J.
Lisenfeld
, “
In situ bandaged Josephson junctions for superconducting quantum processors
,” arXiv:2101.01453 (
2021
).
39.
A.
Osman
,
J.
Simon
,
A.
Bengtsson
,
S.
Kosen
,
P.
Krantz
,
D. P.
Lozano
,
M.
Scigliuzzo
,
P.
Delsing
,
J.
Bylander
, and
A.
Fadavi Roudsari
, “
Simplified Josephson-junction fabrication process for reproducibly high-performance superconducting qubits
,”
Appl. Phys. Lett.
118
,
064002
(
2021
).
40.
C.
Kopas
,
M. K.
Murthy
,
C.
Gregory
,
B. I.
Mercado
,
D. R.
Queen
,
B.
Wagner
, and
N.
Newman
, “
Characterization of the chemical and electrical properties of defects at the niobium-silicon interface
,” arXiv:2011.08359 (
2020
).

Supplementary Material

You do not currently have access to this content.