We present non-linear Poisson and Schrödinger simulations of an industrially fabricated gated quantum dot device at 100 mK using the Quantum-Technology Computer-Aided Design (QTCAD) software [see https://nanoacademic.com/solutions/qtcad/ “QTCAD: A Computer-Aided Design Tool for Quantum-Technology Hardware, Nanoacademic Technologies Inc.” (2022)]. Using automatic adaptive meshing, the 3D conduction band edge profile of an ultra-thin body and buried oxide fully-depleted silicon-on-insulator field-effect transistor is calculated under steady-state and isothermal conditions. This profile is shown to display potential wells consistent with the experimental observation of side-gate-activated corner quantum dots. The electronic structure of these dots is investigated as a function of applied gate bias within the effective mass theory. Crucially, convergence at 100 mK is shown to be a robust feature of QTCAD's non-linear Poisson solver; convergence is consistently achieved without user intervention for 10 out of 10 random gate bias configurations.

1.
See https://nanoacademic.com/solutions/qtcad/
QTCAD: A Computer-Aided Design Tool for Quantum-Technology Hardware, Nanoacademic Technologies Inc.
” (
2022
).
2.
L.
Vandersypen
,
H.
Bluhm
,
J.
Clarke
,
A.
Dzurak
,
R.
Ishihara
,
A.
Morello
,
D.
Reilly
,
L.
Schreiber
, and
M.
Veldhorst
, “
Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent
,”
npj Quantum Inf.
3
,
34
(
2017
).
3.
R.
Maurand
,
X.
Jehl
,
D.
Kotekar-Patil
,
A.
Corna
,
H.
Bohuslavskyi
,
R.
Laviéville
,
L.
Hutin
,
S.
Barraud
,
M.
Vinet
,
M.
Sanquer
 et al., “
A CMOS silicon spin qubit
,”
Nat. Commun.
7
,
13575
(
2016
).
4.
L. C.
Camenzind
,
S.
Geyer
,
A.
Fuhrer
,
R. J.
Warburton
,
D. M.
Zumbühl
, and
A. V.
Kuhlmann
, “
A hole spin qubit in a field-effect transistor above 4 Kelvin
,”
Nat. Electron.
5
,
178
183
(
2022
).
5.
A. M. J.
Zwerver
,
T.
Krähenmann
,
T. F.
Watson
,
L.
Lampert
,
H. C.
George
,
R.
Pillarisetty
,
S. A.
Bojarski
,
P.
Amin
,
S. V.
Amitonov
,
J. M.
Boter
,
R.
Caudillo
,
D.
Corras-Serrano
,
J. P.
Dehollain
,
G.
Droulers
,
E. M.
Henry
,
R.
Kotlyar
,
M.
Lodari
,
F.
Lüthi
,
D. J.
Michalak
,
B. K.
Mueller
,
S.
Neyens
,
J.
Roberts
,
N.
Samkharadze
,
G.
Zheng
,
O. K.
Zietz
,
G.
Scapucci
,
M.
Veldhorst
,
L. M. K.
Vandersypen
, and
J. S.
Clarke
, “
Qubits made by advanced semiconductor manufacturing
,”
Nat. Electron.
5
,
184
190
(
2022
).
6.
N. I. D.
Stuyck
,
R.
Li
,
C.
Godfrin
,
A.
Elsayed
,
S.
Kubicek
,
J.
Jussot
,
B. T.
Chan
,
F. A.
Mohiyaddin
,
M.
Shehata
,
G.
Simion
,
Y.
Canvel
,
L.
Goux
,
M.
Heyns
,
B.
Govoreanu
, and
I. P.
Radu
, “
Uniform spin qubit devices with tunable coupling in an all-silicon 300 mm integrated process
,” in
2021 Symposium on VLSI Circuits
(
IEEE
,
2021
), pp.
1
2
.
7.
M.
Kantner
and
T.
Koprucki
, “
Numerical simulation of carrier transport in semiconductor devices at cryogenic temperatures
,”
Opt. Quantum Electron.
48
,
543
(
2016
).
8.
F. A.
Mohiyaddin
,
F. G.
Curtis
,
M. N.
Ericson
, and
T. S.
Humble
, “
Simulation of silicon nanodevices at cryogenic temperatures for quantum computing
,” in
Proceedings of the 2017 COMSOL Conference in Boston
(
COMSOL
,
2017
).
9.
A.
Beckers
,
F.
Jazaeri
, and
C.
Enz
, “
Cryogenic MOS transistor model
,”
IEEE Trans. Electron Devices
65
,
3617
3625
(
2018
).
10.
X.
Gao
,
E.
Nielsen
,
R. P.
Muller
,
R. W.
Young
,
A. G.
Salinger
,
N. C.
Bishop
,
M. P.
Lilly
, and
M. S.
Carroll
, “
Quantum computer aided design simulation and optimization of semiconductor quantum dots
,”
J. Appl. Phys.
114
,
164302
(
2013
).
11.
B.
Venitucci
,
J.
Li
,
L.
Bourdet
, and
Y.-M.
Niquet
, “
Modeling silicon CMOS devices for quantum computing
,” in
2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)
(
IEEE
,
2019
), pp.
1
4
.
12.
I.
Kriekouki
,
F.
Beaudoin
,
P.
Philippopoulos
,
C.
Zhou
,
J. C.
Lemyre
,
S.
Rochette
,
S.
Mir
,
M. J.
Barragan
,
M.
Pioro-Ladrière
, and
P.
Galy
, “
Interpretation of 28 nm FD-SOI quantum dot transport data taken at 1.4 K using 3D quantum TCAD simulations
,”
Solid-State Electron.
194
,
108355
(
2022
).
13.
M.
Stopa
, “
Quantum dot self-consistent electronic structure and the Coulomb blockade
,”
Phys. Rev. B
54
,
13767
13783
(
1996
).
14.
C.
King
,
J. S.
Schoenfield
,
M. J.
Calderón
,
B.
Koiller
,
A.
Saraiva
,
X.
Hu
,
H.
Jiang
,
M.
Friesen
, and
S. N.
Coppersmith
, “
Lifting of spin blockade by charged impurities in Si-MOS double quantum dot devices
,”
Phys. Rev. B
101
,
155411
(
2020
).
15.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Brooks Cole
,
1976
).
16.
J. M.
Luttinger
and
W.
Kohn
, “
Motion of electrons and holes in perturbed periodic fields
,”
Phys. Rev.
97
,
869
883
(
1955
).
17.
C.
Yang
,
A.
Rossi
,
R.
Ruskov
,
N.
Lai
,
F.
Mohiyaddin
,
S.
Lee
,
C.
Tahan
,
G.
Klimeck
,
A.
Morello
, and
A.
Dzurak
, “
Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting
,”
Nat. Commun.
4
,
2069
(
2013
).
18.
C.
Geuzaine
and
J.-F.
Remacle
, “
Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities
,”
Int. J. Numer. Methods Eng.
79
,
1309
1331
(
2009
).
19.
L.
Bourdet
and
Y.-M.
Niquet
, “
All-electrical manipulation of silicon spin qubits with tunable spin-valley mixing
,”
Phys. Rev. B
97
,
155433
(
2018
).
20.
D. J.
Ibberson
,
L.
Bourdet
,
J. C.
Abadillo-Uriel
,
I.
Ahmed
,
S.
Barraud
,
M. J.
Calderón
,
Y.-M.
Niquet
, and
M. F.
Gonzalez-Zalba
, “
Electric-field tuning of the valley splitting in silicon corner dots
,”
Appl. Phys. Lett.
113
,
053104
(
2018
).
21.
B.
Voisin
,
V.-H.
Nguyen
,
J.
Renard
,
X.
Jehl
,
S.
Barraud
,
F.
Triozon
,
M.
Vinet
,
I.
Duchemin
,
Y.-M.
Niquet
,
S.
De Franceschi
 et al., “
Few-electron edge-state quantum dots in a silicon nanowire field-effect transistor
,”
Nano Lett.
14
,
2094
2098
(
2014
).
22.
F. A.
Zwanenburg
,
A. S.
Dzurak
,
A.
Morello
,
M. Y.
Simmons
,
L. C. L.
Hollenberg
,
G.
Klimeck
,
S.
Rogge
,
S. N.
Coppersmith
, and
M. A.
Eriksson
, “
Silicon quantum electronics
,”
Rev. Mod. Phys.
85
,
961
1019
(
2013
).
23.
H.
Sellier
,
G.
Lansbergen
,
J.
Caro
,
S.
Rogge
,
N.
Collaert
,
I.
Ferain
,
M.
Jurczak
, and
S.
Biesemans
, “
Subthreshold channels at the edges of nanoscale triple-gate silicon transistors
,”
Appl. Phys. Lett.
90
,
073502
(
2007
).
24.
A.
Fuhrer
, “
Phase coherence, orbital and spin states in quantum rings
,” Ph.D. thesis (
ETH Zurich
,
2003
).
25.
H.
Kiyama
,
A.
Korsch
,
N.
Nagai
,
Y.
Kanai
,
K.
Matsumoto
,
K.
Hirakawa
, and
A.
Oiwa
, “
Single-electron charge sensing in self-assembled quantum dots
,”
Sci. Rep.
8
,
13188
(
2018
).
26.
L.
Childress
,
A. S.
Sørensen
, and
M. D.
Lukin
, “
Mesoscopic cavity quantum electrodynamics with quantum dots
,”
Phys. Rev. A
69
,
042302
(
2004
).
27.
F.
Beaudoin
,
D.
Lachance-Quirion
,
W. A.
Coish
, and
M.
Pioro-Ladrière
, “
Coupling a single electron spin to a microwave resonator: Controlling transverse and longitudinal couplings
,”
Nanotechnology
27
,
464003
(
2016
).
28.
X.
Mi
,
M.
Benito
,
S.
Putz
,
D. M.
Zajac
,
J. M.
Taylor
,
G.
Burkard
, and
J. R.
Petta
, “
A coherent spin–photon interface in silicon
,”
Nature
555
,
599
(
2018
).
29.
N.
Samkharadze
,
G.
Zheng
,
N.
Kalhor
,
D.
Brousse
,
A.
Sammak
,
U.
Mendes
,
A.
Blais
,
G.
Scappucci
, and
L.
Vandersypen
, “
Strong spin-photon coupling in silicon
,”
Science
359
,
1123
(
2018
).
30.
J.
Camirand Lemyre
, “
Ingénierie de systèmes quantiques pour une mise à l'échelle compatible aux plateformes industrielles de microélectronique
,” Ph.D. thesis (
Université de Sherbrooke
,
2019
).
31.
P.
Galy
,
J. C.
Lemyre
,
P.
Lemieux
,
F.
Arnaud
,
D.
Drouin
, and
M.
Pioro-Ladriere
, “
Cryogenic temperature characterization of a 28-nm FD-SOI dedicated structure for advanced CMOS and quantum technologies co-integration
,”
IEEE J. Electron Devices Soc.
6
,
594
600
(
2018
).
32.
X.
Xue
,
B.
Patra
,
J. P.
van Dijk
,
N.
Samkharadze
,
S.
Subramanian
,
A.
Corna
,
B.
Paquelet Wuetz
,
C.
Jeon
,
F.
Sheikh
,
E.
Juarez-Hernandez
 et al., “
CMOS-based cryogenic control of silicon quantum circuits
,”
Nature
593
,
205
210
(
2021
).

Supplementary Material

You do not currently have access to this content.