We investigate the impact of localized laser heating on the auto-oscillation properties of a 170 nm wide nano-constriction spin Hall nano-oscillators (SHNOs) fabricated from a NiFe/Pt bilayer on a sapphire substrate. A 532 nm continuous wave laser is focused down to a spot size of about 500 nm at a power ranging from 0 to 12 mW. Through a comparison with resistive heating, we estimate a local temperature rise of about 8 K/mW. We demonstrate reversible laser tuning of the threshold current, the frequency, and the peak power and find that the SHNO frequency can be tuned by up to 350 MHz, which is over three times more than the current tuning alone. Increasing the temperature also results in increased signal jitter, an increased threshold current, and a reduced maximum current for auto-oscillations. Our results open up for optical control of single SHNOs in larger SHNO networks without the need for additional voltage gates.

1.
L.
Berger
, “
Emission of spin waves by a magnetic multilayer traversed by a current
,”
Phys. Rev. B
54
,
9353
(
1996
).
2.
J. C.
Slonczewski
, “
Current-driven excitation of magnetic multilayers
,”
J. Magn. Magn. Mater.
159
,
L1
(
1996
).
3.
J. C.
Slonczewski
, “
Excitation of spin waves by an electric current
,”
J. Magn. Magn. Mater.
195
,
L261
(
1999
).
4.
M.
Tsoi
,
A. G. M.
Jansen
,
J.
Bass
,
W.-C.
Chiang
,
M.
Seck
,
V.
Tsoi
, and
P.
Wyder
, “
Excitation of a magnetic multilayer by an electric current
,”
Phys. Rev. Lett.
80
,
4281
(
1998
).
5.
E. B.
Myers
,
D. C.
Ralph
,
J. A.
Katine
,
R. N.
Louie
, and
R. A.
Buhrman
, “
Current-induced switching of domains in magnetic multilayer devices
,”
Science
285
,
867
(
1999
).
6.
S. I.
Kiselev
,
J. C.
Sankey
,
I. N.
Krivorotov
,
N. C.
Emley
,
R. J.
Schoelkopf
,
R. A.
Buhrman
, and
D. C.
Ralph
, “
Microwave oscillations of a nanomagnet driven by a spin-polarized current
,”
Nature
425
,
380
(
2003
).
7.
W. H.
Rippard
,
M. R.
Pufall
,
S.
Kaka
,
S. E.
Russek
, and
T. J.
Silva
, “
Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts
,”
Phys. Rev. Lett.
92
,
027201
(
2004
).
8.
J. A.
Katine
and
E. E.
Fullerton
, “
Device implications of spin-transfer torques
,”
J. Magn. Magn. Mater.
320
,
1217
(
2008
).
9.
R. K.
Dumas
,
S. R.
Sani
,
S. M.
Mohseni
,
E.
Iacocca
,
Y.
Pogoryelov
,
P. K.
Muduli
,
S.
Chung
,
P.
Dürrenfeld
, and
J.
Åkerman
, “
Recent advances in nanocontact spin-torque oscillators
,”
IEEE Trans. Magn.
50
,
4100107
(
2014
).
10.
T. J.
Silva
and
W. H.
Rippard
, “
Developments in nano-oscillators based upon spin-transfer point-contact devices
,”
J. Magn. Magn. Mater.
320
,
1260
(
2008
).
11.
T.
Chen
,
R. K.
Dumas
,
A.
Eklund
,
P. K.
Muduli
,
A.
Houshang
,
A. A.
Awad
,
Dürrenfeld
,
B. G.
Malm
,
A.
Rusu
, and
J.
Åkerman
, “
Spin-torque and spin-Hall nano-oscillators
,”
Proc. IEEE
104
,
1919
(
2016
).
12.
H.
Mazraati
,
S.
Chung
,
A.
Houshang
,
M.
Dvornik
,
L.
Piazza
,
F.
Qejvanaj
,
S.
Jiang
,
T. Q.
Le
,
J.
Weissenrieder
, and
J.
Åkerman
, “
Low operational current spin Hall nano-oscillators based on NiFe/W bilayers
,”
Appl. Phys. Lett.
109
,
242402
(
2016
).
13.
H.
Fulara
,
M.
Zahedinejad
,
R.
Khymyn
,
A. A.
Awad
,
S.
Muralidhar
,
M.
Dvornik
, and
J.
Åkerman
, “
Spin-orbit torque driven propagating spin waves
,”
Sci. Adv.
5
,
eaax8467
(
2019
).
14.
S.
Bonetti
,
P.
Muduli
,
F.
Mancoff
, and
J.
Åkerman
, “
Spin torque oscillator frequency versus magnetic field angle: The prospect of operation beyond 65 GHz
,”
Appl. Phys. Lett.
94
,
102507
(
2009
).
15.
S.
Bonetti
,
V.
Tiberkevich
,
G.
Consolo
,
G.
Finocchio
,
P.
Muduli
,
F.
Mancoff
,
A.
Slavin
, and
J.
Åkerman
, “
Experimental evidence of self-localized and propagating spin wave modes in obliquely magnetized current-driven nanocontacts
,”
Phys. Rev. Lett.
105
,
217204
(
2010
).
16.
A. A.
Tulapurkar
,
Y.
Suzuki
,
A.
Fukushima
,
H.
Kubota
,
H.
Maehara
,
K.
Tsunekawa
,
D. D.
Djayaprawira
,
N.
Watanabe
, and
S.
Yuasa
, “
Spin-torque diode effect in magnetic tunnel junctions
,”
Nature
438
,
339
(
2005
).
17.
J.
Torrejon
,
M.
Riou
,
F. A.
Araujo
,
S.
Tsunegi
,
G.
Khalsa
,
D.
Querlioz
,
P.
Bortolotti
,
V.
Cros
,
K.
Yakushiji
,
A.
Fukushima
,
H.
Kubota
,
S.
Yuasa
,
M. D.
Stiles
, and
J.
Grollier
, “
Neuromorphic computing with nanoscale spintronic oscillators
,”
Nature
547
,
428
(
2017
).
18.
M.
Romera
,
P.
Talatchian
,
S.
Tsunegi
,
F. A.
Araujo
,
V.
Cros
,
P.
Bortolotti
,
J.
Trastoy
,
K.
Yakushiji
,
A.
Fukushima
,
H.
Kubota
,
S.
Yuasa
,
M.
Ernoult
,
D.
Vodenicarevic
,
T.
Hirtzlin
,
N.
Locatelli
,
D.
Querlioz
, and
J.
Grollier
, “
Vowel recognition with four coupled spin-torque nano-oscillators
,”
Nature
563
,
230
(
2018
).
19.
J.
Grollier
,
D.
Querlioz
, and
M. D.
Stiles
, “
Spintronic nanodevices for bioinspired computing
,”
Proc. IEEE
104
,
2024
(
2016
).
20.
M.
Zahedinejad
,
A. A.
Awad
,
S.
Muralidhar
,
R.
Khymyn
,
H.
Fulara
,
H.
Mazraati
,
M.
Dvornik
, and
J.
Åkerman
, “
Two-dimensional mutually synchronized spin Hall nano-oscillator arrays for neuromorphic computing
,”
Nat. Nanotechnol.
15
,
47
52
(
2020
).
21.
A. V.
Chumak
,
P.
Kabos
,
M.
Wu
,
C.
Abert
,
C.
Adelmann
,
A.
Adeyeye
,
J.
Åkerman
,
F. G.
Aliev
,
A.
Anane
,
A.
Awad
,
C. H.
Back
,
A.
Barman
,
G. E. W.
Bauer
,
M.
Becherer
,
E. N.
Beginin
,
V. A. S. V.
Bittencourt
,
Y. M.
Blanter
,
P.
Bortolotti
,
I.
Boventer
,
D. A.
Bozhko
,
S. A.
Bunyaev
,
J. J.
Carmiggelt
,
R. R.
Cheenikundil
,
F.
Ciubotaru
,
S.
Cotofana
,
G.
Csaba
,
O. V.
Dobrovolskiy
,
C.
Dubs
,
M.
Elyasi
,
K. G.
Fripp
,
H.
Fulara
,
I. A.
Golovchanskiy
,
C.
Gonzalez-Ballestero
,
P.
Graczyk
,
D.
Grundler
,
P.
Gruszecki
,
G.
Gubbiotti
,
K.
Guslienko
,
A.
Haldar
,
S.
Hamdioui
,
R.
Hertel
,
B.
Hillebrands
,
T.
Hioki
,
A.
Houshang
,
C.-M.
Hu
,
H.
Huebl
,
M.
Huth
,
E.
Iacocca
,
M. B.
Jungfleisch
,
G. N.
Kakazei
,
A.
Khitun
,
R.
Khymyn
,
T.
Kikkawa
,
M.
Kläui
,
O.
Klein
,
J. W.
Kłos
,
S.
Knauer
,
S.
Koraltan
,
M.
Kostylev
,
M.
Krawczyk
,
I. N.
Krivorotov
,
V. V.
Kruglyak
,
D.
Lachance-Quirion
,
S.
Ladak
,
R.
Lebrun
,
Y.
Li
,
M.
Lindner
,
R.
Macêdo
,
S.
Mayr
,
G. A.
Melkov
,
S.
Mieszczak
,
Y.
Nakamura
,
H. T.
Nembach
,
A. A.
Nikitin
,
S. A.
Nikitov
,
V.
Novosad
,
J. A.
Otálora
,
Y.
Otani
,
A.
Papp
,
B.
Pigeau
,
P.
Pirro
,
W.
Porod
,
F.
Porrati
,
H.
Qin
,
B.
Rana
,
T.
Reimann
,
F.
Riente
,
O.
Romero-Isart
,
A.
Ross
,
A. V.
Sadovnikov
,
A. R.
Safin
,
E.
Saitoh
,
G.
Schmidt
,
H.
Schultheiss
,
K.
Schultheiss
,
A.
Serga
,
S.
Sharma
,
J. M.
Shaw
,
D.
Suess
,
O.
Surzhenko
,
K.
Szulc
,
T.
Taniguchi
,
M.
Urbánek
,
K.
Usami
,
A. B.
Ustinov
,
T.
Van der Sar
,
S.
Van Dijken
,
V. I.
Vasyuchka
,
R.
Verba
,
S.
Viola Kusminskiy
,
Q.
Wang
,
M.
Weides
,
M.
Weiler
,
S.
Wintz
,
S. P.
Wolski
, and
X.
Zhang
, “
Roadmap on spin-wave computing
,”
IEEE Trans. Magn.
58
,
0800172
(
2022
).
22.
D. I.
Albertsson
,
M.
Zahedinejad
,
A.
Houshang
,
R.
Khymyn
,
J.
Åkerman
, and
A.
Rusu
, “
Ultrafast ising machines using spin torque nano-oscillators
,”
Appl. Phys. Lett.
118
,
112404
(
2021
).
23.
A.
Houshang
,
M.
Zahedinejad
,
S.
Muralidhar
,
J.
Chȩciński
,
R.
Khymyn
,
M.
Rajabali
,
H.
Fulara
,
A. A.
Awad
,
M.
Dvornik
, and
J.
Åkerman
, “
Phase-binarized spin Hall nano-oscillator arrays: Towards spin Hall Ising machines
,”
Phys. Rev. Appl.
17
,
014003
(
2022
).
24.
M.
Zahedinejad
,
H.
Fulara
,
R.
Khymyn
,
A.
Houshang
,
M.
Dvornik
,
S.
Fukami
,
S.
Kanai
,
H.
Ohno
, and
J.
Åkerman
, “
Memristive control of mutual spin Hall nano-oscillator synchronization for neuromorphic computing
,”
Nat. Mater.
21
,
81
87
(
2022
).
25.
V. E.
Demidov
,
S.
Urazhdin
,
A.
Zholud
,
A. V.
Sadovnikov
, and
S. O.
Demokritov
, “
Nanoconstriction-based spin-Hall nano-oscillator
,”
Appl. Phys. Lett.
105
,
172410
(
2014
).
26.
M.
Zahedinejad
,
A. A.
Awad
,
P.
Dürrenfeld
,
A.
Houshang
,
Y.
Yin
,
P. K.
Muduli
, and
J.
Åkerman
, “
Current modulation of nanoconstriction spin-Hall nano-oscillators
,”
IEEE Magn. Lett.
8
,
1
4
(
2017
).
27.
A. A.
Awad
,
P.
Dürrenfeld
,
A.
Houshang
,
M.
Dvornik
,
E.
Iacocca
,
R. K.
Dumas
, and
J.
Åkerman
, “
Long-range mutual synchronization of spin Hall nano-oscillators
,”
Nat. Phys.
13
,
292
(
2017
).
28.
H.
Fulara
,
M.
Zahedinejad
,
R.
Khymyn
,
M.
Dvornik
,
S.
Fukami
,
S.
Kanai
,
H.
Ohno
, and
J.
Åkerman
, “
Giant voltage-controlled modulation of spin Hall nano-oscillator damping
,”
Nat. Commun.
11
,
4006
(
2020
).
29.
J. C.
Sankey
,
I. N.
Krivorotov
,
S. I.
Kiselev
,
P. M.
Braganca
,
N. C.
Emley
,
R. A.
Buhrman
, and
D. C.
Ralph
, “
Mechanisms limiting the coherence time of spontaneous magnetic oscillations driven by DC spin-polarized currents
,”
Phys. Rev. B
72
,
224427
(
2005
).
30.
Q.
Mistral
,
J.-V.
Kim
,
T.
Devolder
,
P.
Crozat
,
C.
Chappert
,
J. a.
Katine
,
M. J.
Carey
, and
K.
Ito
, “
Current-driven microwave oscillations in current perpendicular-to-plane spin-valve nanopillars
,”
Appl. Phys. Lett.
88
,
192507
(
2006
).
31.
J.
Xiao
,
A.
Zangwill
, and
M. D.
Stiles
, “
Macrospin models of spin transfer dynamics
,”
Phys. Rev. B
72
,
014446
(
2005
).
32.
S. E.
Russek
,
S.
Kaka
,
W. H.
Rippard
,
M. R.
Pufall
, and
T. J.
Silva
, “
Finite-temperature modeling of nanoscale spin-transfer oscillators
,”
Phys. Rev. B
71
,
104425
(
2005
).
33.
J.-V.
Kim
,
V.
Tiberkevich
, and
A. N.
Slavin
, “
Generation linewidth of an auto-oscillator with a nonlinear frequency shift: Spin-torque nano-oscillator
,”
Phys. Rev. Lett.
100
,
017207
(
2008
).
34.
V.
Tiberkevich
,
A.
Slavin
, and
J.-V.
Kim
, “
Microwave power generated by a spin-torque oscillator in the presence of noise
,”
Appl. Phys. Lett.
91
,
192506
(
2007
).
35.
A.
Kumar
,
M.
Rajabali
,
V. H.
González
,
M.
Zahedinejad
,
A.
Houshang
, and
J.
Åkerman
, “
Fabrication of voltage-gated spin Hall nano-oscillators
,”
Nanoscale
14
,
1432
1439
(
2022
).
36.
A. A.
Awad
,
A.
Houshang
,
M.
Zahedinejad
,
R.
Khymyn
, and
J.
Åkerman
, “
Width dependent auto-oscillating properties of constriction based spin Hall nano-oscillators
,”
Appl. Phys. Lett.
116
,
232401
(
2020
).
37.
M.
Dvornik
,
A. A.
Awad
, and
J.
Åkerman
, “
Origin of magnetization auto-oscillations in constriction-based spin Hall nano-oscillators
,”
Phys. Rev. Appl.
9
,
014017
(
2018
).
38.
A.
Slavin
and
P.
Kabos
, “
Approximate theory of microwave generation in a current-driven magnetic nanocontact magnetized in an arbitrary direction
,”
IEEE Trans. Magn.
41
,
1264
1273
(
2005
).
39.
A.
Slavin
and
V.
Tiberkevich
, “
Nonlinear auto-oscillator theory of microwave generation by spin-polarized current
,”
IEEE T. Magn.
45
,
1875
(
2009
).
40.
W. A.
Challener
,
C.
Peng
,
A. V.
Itagi
,
D.
Karns
,
W.
Peng
,
Y.
Peng
,
X.
Yang
,
X.
Zhu
,
N. J.
Gokemeijer
,
Y.-T.
Hsia
,
G.
Ju
,
R. E.
Rottmayer
,
M. A.
Seigler
, and
E. C.
Gage
, “
Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer
,”
Nat. Photonics
3
,
220
224
(
2009
).
41.
R.
Freeman
,
R.
Lemasters
,
T.
Kalejaiye
,
F.
Wang
,
G.
Chen
,
J.
Ding
,
M.
Wu
,
V. E.
Demidov
,
S. O.
Demokritov
,
H.
Harutyunyan
, and
S.
Urazhdin
, “
Brillouin light scattering of spin waves inaccessible with free-space light
,”
Phys. Rev. Res.
2
,
033427
(
2020
).
42.
F. J. T.
Gonçalves
,
T.
Hache
,
M.
Bejarano
,
T.
Hula
,
O.
Hellwig
,
J.
Fassbender
, and
H.
Schultheiss
, “
Agility of spin Hall nano-oscillators
,”
Phys. Rev. Appl.
16
,
054050
(
2021
).

Supplementary Material

You do not currently have access to this content.