Owing to the intrinsically wide bandgap and high uniformity, amorphous Ga2O3 (a-Ga2O3) has been illustrating a great industrial potential for large-area deep ultraviolet (UV) photosensor arrays. However, a seemingly irreconcilable contradiction between high responsivity and long persistent photoconductivity has hampered the growing pace of such devices. In this work, three-terminal InGaZnO (IGZO)/a-Ga2O3 dual-active-layer (DAL) transistors were developed to realize the ability of a-Ga2O3 as the active layer both in switching and sensing. Benefitting from the introduction of ultrathin IGZO electron reservoir and defect control of a-Ga2O3, the DAL device demonstrates more stable and superior gate-control capability with promising performance including high on/off ratio and field-effect mobility of ∼108 and 8.3 cm2/V⋅s, respectively, as well as a small sub-threshold swing (SS) of 0.36 V/dec. Under 254 nm UV illumination, the DAL device manifests a light-to-dark ratio of ∼108, a responsivity of 4.8 × 103 A W−1, a detectivity of 8 × 1015 Jones, and a UV/visible rejection ratio (R254/R400) of 64. The simultaneous achievement of deep UV photo-detection and transistor's switching performance in a-Ga2O3 material offers excellent potential for the construction of large-area active-matrix UV photosensor arrays with the simple and low-cost fabrication process.

1.
S.
Cui
,
Z.
Mei
,
Y.
Zhang
,
H.
Liang
, and
X.
Du
,
Adv. Opt. Mater
5
,
1700454
(
2017
).
2.
Y.
Chen
,
Y.
Lu
,
M.
Liao
,
Y.
Tian
,
Q.
Liu
,
C.
Gao
,
X.
Yang
, and
C.
Shan
,
Adv. Funct. Mater.
29
(
50
),
1906040
(
2019
).
3.
Y.
Qin
,
S.
Long
,
Q.
He
,
H.
Dong
,
G.
Jian
,
Y.
Zhang
,
X.
Hou
,
P.
Tan
,
Z.
Zhang
,
Y.
Lu
,
C.
Shan
,
J.
Wang
,
W.
Hu
,
H.
Lv
,
Q.
Liu
, and
M.
Liu
,
Adv. Electron. Mater.
5
,
1900389
(
2019
).
4.
H.
Zhou
,
L.
Cong
,
J.
Ma
,
B.
Li
,
M.
Chen
,
H.
Xu
, and
Y.
Liu
,
J. Mater. Chem. C
7
(
42
),
13149
13155
(
2019
).
5.
Z.
Han
,
H.
Liang
,
W.
Huo
,
X.
Zhu
,
X.
Du
, and
Z.
Mei
,
Adv. Opt. Mater.
8
,
1901833
(
2020
).
6.
T.
Wang
,
H.
Liang
,
Z.
Han
,
Y.
Sui
, and
Z.
Mei
,
Adv. Mater. Technol.
6
,
2000945
(
2021
).
7.
H.
Liang
,
Z.
Han
, and
Z.
Mei
,
Phys. Status Solidi A
218
,
2000339
(
2021
).
8.
H.
Liang
,
S.
Cui
,
R.
Su
,
P.
Guan
,
Y.
He
,
L.
Yang
,
L.
Chen
,
Y.
Zhang
,
Z.
Mei
, and
X.
Du
,
ACS Photonics
6
,
351
(
2019
).
9.
S.
Jeon
,
S.-E.
Ahn
,
I.
Song
,
C. J.
Kim
,
U.-I.
Chung
,
E.
Lee
,
I.
Yoo
,
A.
Nathan
,
S.
Lee
,
K.
Ghaffarzadeh
,
J.
Robertson
, and
K.
Kim
,
Nat. Mater.
11
,
301
(
2012
).
10.
D.
Ye
,
Z.
Mei
,
H.
Liang
,
L.
liu
,
Y.
Zhang
,
J.
Li
,
Y.
Liu
,
C.
Gu
, and
X.
Du
,
Sci. Rep.
6
,
26169
(
2016
).
11.
J. K.
Jeong
,
H.
Won Yang
,
J. H.
Jeong
,
Y.-G.
Mo
, and
H. D.
Kim
,
Appl. Phys. Lett.
93
,
123508
(
2008
).
12.
J. H.
Park
,
Y.
Kim
,
S.
Yoon
,
S.
Hong
, and
H. J.
Kim
,
ACS Appl. Mater. Interfaces
6
,
21363
(
2014
).
13.
W.
Huo
,
Z.
Mei
,
Y.
Lu
,
Z.
Han
,
R.
Zhu
,
T.
Wang
,
Y.
Sui
,
H.
Liang
, and
X.
Du
,
Chin. Phys. B
28
,
087302
(
2019
).
14.
W.-T.
Chen
,
S.-Y.
Lo
,
S.-C.
Kao
,
H.-W.
Zan
,
C.-C.
Tsai
,
J.-H.
Lin
,
C.-H.
Fang
, and
C.-C.
Lee
,
IEEE Electron Device Lett.
32
,
1552
(
2011
).
15.
K.
Arora
,
N.
Kumar
,
P.
Vashishtha
,
G.
Gupta
, and
M.
Kumar
,
J. Phys. D: Appl. Phys.
2021
,
54
,
165102
.
16.
H.
Xu
,
M.
Xu
,
Z.
Chen
,
M.
Li
,
J.
Zou
,
H.
Tao
,
L.
Wang
, and
J.
Peng
,
IEEE Electron Device Lett.
37
,
57
(
2016
).
17.
A.
Abliz
,
C.-W.
Huang
,
J.
Wang
,
L.
Xu
,
L.
Liao
,
X.
Xiao
,
W.-W.
Wu
,
Z.
Fan
,
C.
Jiang
,
J.
Li
,
S.
Guo
,
C.
Liu
, and
T.
Guo
,
ACS Appl. Mater. Interfaces
8
,
7862
(
2016
).
18.
S.-Y.
Huang
,
T.-C.
Chang
,
M.-C.
Chen
,
S.-C.
Chen
,
C.-T.
Tsai
,
M.-C.
Hung
,
C.-H.
Tu
,
C.-H.
Chen
,
J.-J.
Chang
, and
W.-L.
Liau
,
Electrochem. Solid-State Lett.
14
,
H177
(
2011
).
19.
R. B. M.
Cross
and
M. M.
De Souza
,
Appl. Phys. Lett.
89
,
263513
(
2006
).
20.
Y.-F.
Zhang
,
X.-H.
Chen
,
Y.
Xu
,
F.-F.
Ren
,
S.-L.
Gu
,
R.
Zhang
,
Y.-D.
Zheng
, and
J.-D.
Ye
,
Chin. Phys. B
28
(
2
),
028501
(
2019
).
21.
H. S.
Bae
,
M. H.
Yoon
,
J. H.
Kim
, and
S.
Im
,
Appl. Phys. Lett.
83
,
5313
(
2003
).
22.
X.
Xiao
,
L.
Liang
,
Y.
Pei
,
J.
Yu
,
H.
Duan
,
T.-C.
Chang
, and
H.
Cao
,
Appl. Phys. Lett.
116
,
192102
(
2020
).
23.
Y.
Xu
,
Z.
An
,
L.
Zhang
,
Q.
Feng
,
J.
Zhang
,
C.
Zhang
, and
Y.
Hao
,
Opt. Mater. Express
8
,
2941
(
2018
).
24.
K.
Arora
,
N.
Goel
,
M.
Kumar
, and
M.
Kumar
,
ACS Photonics
5
,
2391
(
2018
).
25.
F.-P.
Yu
,
S.-L.
Ou
, and
D.-S.
Wuu
,
Opt. Mater. Express
5
,
1240
(
2015
).
26.
D.
Zhang
,
W.
Zheng
,
R. C.
Lin
,
T. T.
Li
,
Z. J.
Zhang
, and
F.
Huang
,
J. Alloys Compd.
735
,
150
(
2018
).
27.
L.-X.
Qian
,
Z.-H.
Wu
,
Y.-Y.
Zhang
,
P. T.
Lai
,
X.-Z.
Liu
, and
Y.-R.
Li
,
ACS Photonics
4
,
2203
(
2017
).
28.
Y.
Qin
,
H.
Dong
,
S.
Long
,
Q.
He
,
G.
Jian
,
Y.
Zhang
,
X.
Zhou
,
Y.
Yu
,
X.
Hou
,
P.
Tan
,
Z.
Zhang
,
Q.
Liu
,
H.
Lv
, and
M.
Liu
,
IEEE Electron Device Lett.
40
,
742
(
2019
).
29.
M.
Mohamed
,
K.
Irmscher
,
C.
Janowitz
,
Z.
Galazka
,
R.
Manzke
, and
R.
Fornari
,
Appl. Phys. Lett.
101
,
132106
(
2012
).
30.
S. A.
Chambers
,
T.
Droubay
,
T. C.
Kaspar
, and
M.
Gutowski
,
J. Vac. Sci. Technol. B
22
(
4
),
2205
(
2004
).
31.
C.
Bae
,
D.
Kim
,
S.
Moon
,
T.
Choi
,
Y.
Kim
,
B. S.
Kim
,
J.-S.
Lee
,
H.
Shin
, and
J.
Moon
,
ACS Appl. Mater. Interfaces
2
,
626
(
2010
).

Supplementary Material

You do not currently have access to this content.