We present a micro-mechanical terahertz (THz) detector fabricated on a silicon on insulator substrate and operating at room-temperature. The device is based on a U-shaped cantilever of micrometric size, on top of which two aluminum half-wave dipole antennas are deposited. This produces an absorption extending over the 23.5 THz frequency range. Due to the different thermal expansion coefficients of silicon and aluminum, the absorbed radiation induces a deformation of the cantilever, which is read out optically using a 1.5 μm laser diode. By illuminating the detector with an amplitude modulated, 2.5 THz quantum cascade laser, we obtain, at room-temperature and atmospheric pressure, a responsivity of 1.5×108pmW1 for the fundamental mechanical bending mode of the cantilever. This yields noise-equivalent-power of 20nW/Hz at 2.5 THz. Finally, the low mechanical quality factor of the mode grants a broad frequency response of approximately 150 kHz bandwidth, with a thermal response time of ∼ 2.5 μs.

1.
See https://www.vadiodes.com/en/products/detectors for information on the performance of commercial THz Schottky diodes.
2.
See https://dexterresearch.com/product-finder/thermopile-selection-guide/ for information on the performance of commercial thermopiles.
3.
F.
Sizov
, “
Terahertz radiation detectors: The state-of-the-art
,”
Semicond. Sci. Technol.
33
,
123001
(
2018
).
4.
F.
Simoens
and
J.
Meilhan
, “
Terahertz real-time imaging uncooled array based on antenna- and cavity-coupled bolometers
,”
Philos. Trans. R. Soc., A
372
,
20130111
(
2014
).
5.
P. G.
Datskos
,
P. I.
Oden
,
T.
Thundat
,
E. A.
Wachter
,
R. J.
Warmack
, and
S. R.
Hunter
, “
Remote infrared radiation detection using piezoresistive microcantilevers
,”
Appl. Phys. Lett.
69
,
2986
2988
(
1996
).
6.
S. R.
Manalis
,
S. C.
Minne
,
C. F.
Quate
,
G. G.
Yaralioglu
, and
A.
Atalar
, “
Two-dimensional micromechanical bimorph arrays for detection of thermal radiation
,”
Appl. Phys. Lett.
70
,
3311
3313
(
1997
).
7.
T.
Perazzo
,
M.
Mao
,
O.
Kwon
,
A.
Majumdar
,
J. B.
Varesi
, and
P.
Norton
, “
Infrared vision using uncooled micro-optomechanical camera
,”
Appl. Phys. Lett.
74
,
3567
(
1999
).
8.
D.
Grbovic
,
N. V.
Lavrik
,
P. G.
Datskos
,
D.
Forrai
,
E.
Nelson
,
J.
Devitt
, and
B.
McIntyre
, “
Uncooled infrared imaging using bimaterial microcantilever arrays
,”
Appl. Phys. Lett.
89
,
073118
(
2006
).
9.
R. S.
Hunter
,
G.
Maurer
,
L.
Jiang
, and
G.
Simelgor
, “
High sensitivity uncooled microcantilever infrared imaging arrays
,”
Proc. SPIE
6206
,
62061J
(
2006
).
10.
M.
Steffanson
and
I.
Rangelow
, “
Microthermomechanical infrared sensors
,”
Opto-Electron. Rev.
22
,
1
15
(
2014
).
11.
D.
Grbovic
,
N. V.
Lavrik
,
S.
Rajic
, and
P. G.
Datskos
, “
Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors
,”
J. Appl. Phys.
104
,
054508
(
2008
).
12.
F.
Alves
,
D.
Grbovic
,
B.
Kearney
,
N. V.
Lavrik
, and
G.
Karunasiri
, “
Bi-material terahertz sensors using metamaterial structures
,”
Opt. Express
21
,
13256
(
2013
).
13.
F.
Alves
,
D.
Grbovic
, and
G.
Karunasiri
, “
Mems thz sensors using metasurface structures
,”
Proc. SPIE
10531
,
1053111
(
2013
).
14.
B.
Qiu
,
Y.
Zhang
,
N.
Nagai
, and
K.
Hirakawa
, “
Enhancing the thermal responsivity of microelectromechanical system beam resonators by preloading a critical buckling strain
,”
Appl. Phys. Lett.
119
,
153502
(
2021
).
15.
C.
Belacel
,
Y.
Todorov
,
S.
Barbieri
,
D.
Gacemi
,
I.
Favero
, and
C.
Sirtori
, “
Optomechanical terahertz detection with single meta-atom resonator
,”
Nat. Commun.
8
,
1578
(
2017
).
16.
G.
Anetsberger
,
O.
Arcizet
,
Q. P.
Unterreithmeier
,
R.
Rivière
,
A.
Schliesser
,
E. M.
Weig
,
J. P.
Kotthaus
, and
T. J.
Kippenberg
, “
Near-field cavity optomechanics with nanomechanical oscillators
,”
Nat. Phys.
5
,
909
(
2009
).
17.
P. H.
Kim
,
C.
Doolin
,
B. D.
Hauer
,
A. J. R.
MacDonald
,
M. R.
Freeman
,
P. E.
Barclay
, and
J. P.
Davis
, “
Nanoscale torsional optomechanics
,”
Appl. Phys. Lett.
102
,
053102
(
2013
).
18.
C.
Metzger
,
I.
Favero
,
A.
Ortlieb
, and
K.
Karrai
, “
Optical self-cooling of a deformable Fabry-Perot cavity in the classical limit
,”
Phys. Rev. B
78
,
035309
(
2008
).
19.
B.
Hauer
,
C.
Doolin
,
K.
Beach
, and
J.
Davis
, “
A general procedure for thermomechanical calibration of nano/micro-mechanical resonators
,”
Ann. Phys.
339
,
181
207
(
2013
).
20.
B.
Chomet
,
D.
Gacemi
,
A.
Vasanelli
,
C.
Sirtori
, and
Y.
Todorov
, “
Optomechanical temporal sampling of terahertz signals
,”
Appl. Phys. Lett.
119
,
181103
(
2021
).
21.
S. J.
Orfanidis
,
Electromagnetic Waves and Antennas
(
ECE Department Rutgers University
,
Piscataway, NJ
,
2017
).
22.
M.
Aspelmeyer
,
T. J.
Kippenberg
, and
F.
Marquardt
, “
Cavity optomechanics
,”
Rev. Mod. Phys.
86
,
1391
1452
(
2014
).

Supplementary Material

You do not currently have access to this content.