Spectroscopic applications are characterized by the constant effort to combine high spectral resolution with large bandwidth. A trade-off typically exists between these two aspects, but the recent development of super-resolved spectroscopy techniques is bringing new opportunities into this field. This is particularly relevant for all applications where compact and cost-effective instruments are needed such as in sensing, quality control, environmental monitoring, or biometric authentication, to name a few. These unconventional approaches exploit several strategies for spectral investigation, taking advantage of concepts such as sparse sampling, artificial intelligence, or post-processing reconstruction algorithms. In this Perspective, we discuss the main strengths and weaknesses of these methods, tracing promising future directions for their further development and widespread adoption.

1.
J.
Bao
and
M. G.
Bawendi
, “
A colloidal quantum dot spectrometer
,”
Nature
523
(
7558
),
67
70
(
2015
).
2.
Z.
Yang
,
T.
Albrow-Owen
,
H.
Cui
,
J.
Alexander-Webber
,
F.
Gu
,
X.
Wang
,
T.-C.
Wu
,
M.
Zhuge
,
C.
Williams
,
P.
Wang
,
A. V.
Zayats
,
W. C.
Dai
,
S.
Hofmann
,
M.
Overend
,
L.
Tong
,
Q.
Yang
,
Z.
Sun
, and
T.
Hasan
, “
Single-nanowire spectrometers
,”
Science
365
(
6457
),
1017
1020
(
2019
).
3.
W.
Hadibrata
,
H.
Noh
,
H.
Wei
,
S.
Krishnaswamy
, and
K.
Aydin
, “
Compact, high‐resolution inverse‐designed on‐chip spectrometer based on tailored disorder modes
,”
Laser Photonics Rev.
15
(
9
),
2000556
(
2021
).
4.
N. H.
Wan
,
F.
Meng
,
T.
Schröder
,
R. J.
Shiue
,
E. H.
Chen
, and
D.
Englund
, “
High-resolution optical spectroscopy using multimode interference in a compact tapered fibre
,”
Nat. Commun.
6
(
1
),
7762
(
2015
).
5.
G. C.
Valley
,
G. A.
Sefler
, and
T. J.
Shaw
, “
Multimode waveguide speckle patterns for compressive sensing
,”
Opt. Lett.
41
(
11
),
2529
2532
(
2016
).
6.
Z.
Zhang
,
Y.
Li
,
Y.
Wang
,
Z.
Yu
,
X.
Sun
, and
H. K.
Tsang
, “
Compact high resolution speckle spectrometer by using linear coherent integrated network on silicon nitride platform at 776 nm
,”
Laser Photonics Rev.
15
(
11
),
2100039
(
2021
).
7.
C.
Kim
,
D.
Park
, and
H. N.
Lee
, “
Compressive sensing spectroscopy using a residual convolutional neural network
,”
Sensors
20
(
3
),
594
(
2020
).
8.
Y.
Oiknine
,
I.
August
,
D. G.
Blumberg
, and
A.
Stern
, “
Compressive sensing resonator spectroscopy
,”
Opt. Lett.
42
(
1
),
25
28
(
2017
).
9.
J.
Wang
,
B.
Zheng
, and
X.
Wang
, “
Strategies for high performance and scalable on-chip spectrometers
,”
J. Phys.
3
(
1
),
012006
(
2020
).
10.
Y.
Wan
,
X.
Fan
, and
Z.
He
, “
Review on speckle-based spectrum analyzer
,”
Photonic Sens.
11
(
2
),
187
202
(
2021
).
11.
H.
Cao
, “
Perspective on speckle spectrometers
,”
J. Opt.
19
(
6
),
060402
(
2017
).
12.
H.
Cao
and
Y.
Eliezer
, “
Harnessing disorder for photonic device applications
,”
Appl. Phys. Rev.
9
(
1
),
011309
(
2022
).
13.
S. F.
Liew
,
B.
Redding
,
M. A.
Choma
,
H. D.
Tagare
, and
H.
Cao
, “
Broadband multimode fiber spectrometer
,”
Opt. Lett.
41
(
9
),
2029
2032
(
2016
).
14.
G. J.
Hornig
,
T. R.
Harrison
,
L.
Bu
,
S.
Azmayesh-Fard
, and
R. G.
Decorby
, “
Wavemeter based on dispersion and speckle in a tapered hollow waveguide
,”
OSA Continuum
2
(
2
),
495
506
(
2019
).
15.
D.
Yi
,
Y.
Zhang
,
X.
Wu
, and
H. K.
Tsang
, “
Integrated multimode waveguide with photonic lantern for speckle spectroscopy
,”
IEEE J. Quantum Electron.
57
(
1
),
1
8
(
2021
).
16.
Y.
Wan
,
X.
Fan
,
S.
Wang
,
Z.
Zhang
,
S.
Zhao
, and
Z.
He
, “
Wavemeter capable of simultaneously achieving ultra-high resolution and broad bandwidth by using Rayleigh speckle from single mode fiber
,”
J. Lightwave Technol.
39
(
7
),
2223
2229
(
2021
).
17.
B.
Redding
and
H.
Cao
, “
Using a multimode fiber as a high-resolution, low-loss spectrometer
,”
Opt. Lett.
37
(
16
),
3384
3386
(
2012
).
18.
B.
Redding
,
S. F.
Liew
,
Y.
Bromberg
,
R.
Sarma
, and
H.
Cao
, “
Evanescently coupled multimode spiral spectrometer
,”
Optica
3
(
9
),
956
962
(
2016
).
19.
N. K.
Metzger
,
R.
Spesyvtsev
,
G. D.
Bruce
,
B.
Miller
,
G. T.
Maker
,
G.
Malcolm
,
M.
Mazilu
, and
K.
Dholakia
, “
Harnessing speckle for a sub-femtometre resolved broadband wavemeter and laser stabilization
,”
Nat. Commun.
8
(
1
),
15610
(
2017
).
20.
Y.
Kwak
,
S. M.
Park
,
Z.
Ku
,
A.
Urbas
, and
Y. L.
Kim
, “
A pearl spectrometer
,”
Nano Lett.
21
(
2
),
921
930
(
2021
).
21.
B.
Redding
,
M.
Alam
,
M.
Seifert
, and
H.
Cao
, “
High-resolution and broadband all-fiber spectrometers
,”
Optica
1
(
3
),
175
180
(
2014
).
22.
B.
Redding
,
S. F.
Liew
,
R.
Sarma
, and
H.
Cao
, “
Compact spectrometer based on a disordered photonic chip
,”
Nat. Photonics
7
(
9
),
746
751
(
2013
).
23.
G. D.
Bruce
,
L.
O'Donnell
,
M.
Chen
, and
K.
Dholakia
, “
Overcoming the speckle correlation limit to achieve a fiber wavemeter with attometer resolution
,”
Opt. Lett.
44
(
6
),
1367
1370
(
2019
).
24.
N.
Coluccelli
,
M.
Cassinerio
,
B.
Redding
,
H.
Cao
,
P.
Laporta
, and
G.
Galzerano
, “
The optical frequency comb fibre spectrometer
,”
Nat. Commun.
7
(
1
),
12995
(
2016
).
25.
U.
Kürüm
,
P. R.
Wiecha
,
R.
French
, and
O. L.
Muskens
, “
Deep learning enabled real time speckle recognition and hyperspectral imaging using a multimode fiber array
,”
Opt. Express
27
(
15
),
20965
20979
(
2019
).
26.
E.
Edrei
,
N.
Cohen
,
E.
Gerstel
,
S.
Gamzu-Letova
,
N.
Mazurski
, and
U.
Levy
, “
Chip-scale atomic wave-meter enabled by machine learning
,”
Sci. Adv.
8
(
15
),
eabn3391
(
2022
).
27.
R. K.
Gupta
,
G. D.
Bruce
,
S. J.
Powis
, and
K.
Dholakia
, “
Deep learning enabled laser speckle wavemeter with a high dynamic range
,”
Laser Photonics Rev.
14
(
9
),
2000120
(
2020
).
28.
E.
Huang
,
Q.
Ma
, and
Z.
Liu
, “
Etalon array reconstructive spectrometry
,”
Sci. Rep.
7
(
1
),
40693
(
2017
).
29.
C.
Kim
,
W. B.
Lee
,
S. K.
Lee
,
Y. T.
Lee
, and
H. N.
Lee
, “
Fabrication of 2D thin-film filter-array for compressive sensing spectroscopy
,”
Opt. Lasers Eng.
115
,
53
58
(
2019
).
30.
Z.
Wang
and
Z.
Yu
, “
Spectral analysis based on compressive sensing in nanophotonic structures
,”
Opt. Express
22
(
21
),
25608
25614
(
2014
).
31.
D. L.
Donoho
, “
For most large underdetermined systems of linear equations, the minimal ℓ1 solution is also the sparsest solution
,”
Commun. Pure Appl. Math.
59
(
6
),
797
829
(
2006
).
32.
E.
Candes
and
J.
Romberg
, “
Sparsity and incoherence in compressive sampling
,”
Inverse Probl.
23
(
3
),
969
(
2007
).
33.
C. C.
Chang
and
H. N.
Lee
, “
On the estimation of target spectrum for filter-array based spectrometers
,”
Opt. Express
16
(
2
),
1056
1061
(
2008
).
34.
J.
Oliver
,
W.
Lee
,
S.
Park
, and
H. N.
Lee
, “
Improving resolution of miniature spectrometers by exploiting sparse nature of signals
,”
Opt. Express
20
(
3
),
2613
2625
(
2012
).
35.
J.
Oliver
,
W. B.
Lee
, and
H. N.
Lee
, “
Filters with random transmittance for improving resolution in filter-array-based spectrometers
,”
Opt. Express
21
(
4
),
3969
3989
(
2013
).
36.
R. M.
Nguyen
,
D. K.
Prasad
, and
M. S.
Brown
, “
Training-based spectral reconstruction from a single RGB image
,” in
European Conference on Computer Vision
(
Springer
,
Cham
,
2014
), pp.
186
201
.
37.
B.
Arad
and
O.
Ben-Shahar
, “
Sparse recovery of hyperspectral signal from natural RGB images
,” in
European Conference on Computer Vision
(
Springer
,
Cham
,
2016
), pp.
19
34
.
38.
J.
Aeschbacher
,
J.
Wu
, and
R.
Timofte
, “
In defense of shallow learned spectral reconstruction from RGB images
,” in
Proceedings of the IEEE International Conference on Computer Vision Workshops
(IEEE,
2017
), pp.
471
479
.
39.
S.
Galliani
,
C.
Lanaras
,
D.
Marmanis
,
E.
Baltsavias
, and
K.
Schindler
, “
Learned spectral super-resolution
,” arXiv:1703.09470 (
2017
).
40.
Z.
Shi
,
C.
Chen
,
Z.
Xiong
,
D.
Liu
, and
F.
Wu
, “
HSCNN+: Advanced CNN-based hyperspectral recovery from RGB images
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
(IEEE,
2018
), pp.
939
947
.
41.
J.
Li
,
C.
Wu
,
R.
Song
,
Y.
Li
, and
F.
Liu
, “
Adaptive weighted attention network with camera spectral sensitivity prior for spectral reconstruction from RGB images
,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(IEEE,
2020
), pp.
462
463
.
42.
J.
He
,
Q.
Yuan
,
J.
Li
, and
L.
Zhang
, “
PoNet: A universal physical optimization-based spectral super-resolution network for arbitrary multispectral images
,”
Inf. Fusion
80
,
205
225
(
2022
).
43.
A.
Boschetti
,
A.
Taschin
,
P.
Bartolini
,
A. K.
Tiwari
,
L.
Pattelli
,
R.
Torre
, and
D. S.
Wiersma
, “
Spectral super-resolution spectroscopy using a random laser
,”
Nat. Photonics
14
(
3
),
177
182
(
2020
).
44.
W.
Margulis
,
A.
Das
,
J. P.
von der Weid
, and
A. S.
Gomes
, “
Hybrid electronically addressable random fiber laser
,”
Opt. Express
28
(
16
),
23388
23396
(
2020
).
45.
T. L.
Shen
,
H. W.
Hu
,
W. J.
Lin
,
Y. M.
Liao
,
T. P.
Chen
,
Y. K.
Liao
,
T. Y.
Lin
, and
Y. F.
Chen
, “
Coherent Förster resonance energy transfer: A new paradigm for electrically driven quantum dot random lasers
,”
Sci. Adv.
6
(
41
),
eaba1705
(
2020
).
46.
A.
Consoli
,
N.
Caselli
, and
C.
López
, “
Electrically driven random lasing from a modified Fabry–Pérot laser diode
,”
Nat. Photonics
16
(
3
),
219
225
(
2022
).
47.
L.
Zhu
,
W.
Zhang
,
D.
Elnatan
, and
B.
Huang
, “
Faster STORM using compressed sensing
,”
Nat. Methods
9
(
7
),
721
723
(
2012
).
48.
H.
Song
,
Y.
Ma
,
Y.
Han
,
W.
Shen
,
W.
Zhang
,
Y.
Li
,
X.
Liu
,
Y.
Peng
, and
X.
Hao
, “
Deep‐learned broadband encoding stochastic filters for computational spectroscopic instruments
,”
Adv. Theory Simul.
4
(
3
),
2000299
(
2021
).
49.
A.
Dávila
and
J. A.
Rayas
, “
Single-shot phase detection in a speckle wavemeter for the measurement of femtometric wavelength change
,”
Opt. Lasers Eng.
125
,
105856
(
2020
).
50.
E.
Nehme
,
L. E.
Weiss
,
T.
Michaeli
, and
Y.
Shechtman
, “
Deep-STORM: Super-resolution single-molecule microscopy by deep learning
,”
Optica
5
(
4
),
458
464
(
2018
).
You do not currently have access to this content.