The inverse spinel ferrimagnetic NiCo2O4 possesses high magnetic Curie temperature TC, high spin polarization, and strain-tunable magnetic anisotropy. Understanding the thickness scaling limit of these intriguing magnetic properties in NiCo2O4 thin films is critical for their implementation in nanoscale spintronic applications. In this work, we report the unconventional magnetotransport properties of epitaxial (001) NiCo2O4 films on MgAl2O4 substrates in the ultrathin limit. Anomalous Hall effect measurements reveal strong perpendicular magnetic anisotropy for films down to 1.5 unit cell (1.2 nm), while TC for 3 unit cell and thicker films remains above 300 K. The sign change in the anomalous Hall conductivity (σxy) and its scaling relation with the longitudinal conductivity (σxx) can be attributed to the competing effects between impurity scattering and band intrinsic Berry curvature, with the latter vanishing upon the thickness driven metal–insulator transition. Our study reveals the critical role of film thickness in tuning the relative strength of charge correlation, Berry phase effect, spin–orbit interaction, and impurity scattering, providing important material information for designing scalable epitaxial magnetic tunnel junctions and sensing devices using NiCo2O4.

1.
T.
Dietl
, “
A ten-year perspective on dilute magnetic semiconductors and oxides
,”
Nat. Mater.
9
,
965
(
2010
).
2.
P.
Li
,
C.
Xia
,
J.
Li
,
Z.
Zhu
,
Y.
Wen
,
Q.
Zhang
,
J.
Zhang
,
Y.
Peng
,
H. N.
Alshareef
, and
X.
Zhang
, “
Spin filtering in epitaxial spinel films with nanoscale phase separation
,”
ACS Nano
11
,
5011
(
2017
).
3.
X.
Chen
,
X.
Zhang
,
M.-G.
Han
,
L.
Zhang
,
Y.
Zhu
,
X.
Xu
, and
X.
Hong
, “
Magnetotransport anomaly in room-temperature ferrimagnetic NiCo2O4 thin films
,”
Adv. Mater.
31
,
1805260
(
2019
).
4.
M.
Xue
,
X.
Chen
,
S.
Ding
,
Z.
Liang
,
Y.
Peng
,
X.
Li
,
L.
Zha
,
W.
Yang
,
J.
Han
,
S.
Liu
 et al., “
Transport anomaly in perpendicular magnetic anisotropic NiCo2O4 thin films with column-like phase separation
,”
ACS Appl. Electron. Mater.
2
,
3964
(
2020
).
5.
D.
Kan
,
L.
Xie
, and
Y.
Shimakawa
, “
Scaling of the anomalous Hall effect in perpendicularly magnetized epitaxial films of the ferrimagnet NiCo2O4
,”
Phys. Rev. B
104
,
134407
(
2021
).
6.
C.
Mellinger
,
J.
Waybright
,
X.
Zhang
,
C.
Schmidt
, and
X.
Xu
, “
Perpendicular magnetic anisotropy in conducting NiCo2O4 films from spin-lattice coupling
,”
Phys. Rev. B
101
,
014413
(
2020
).
7.
Y.
Shen
,
D.
Kan
,
I.-C.
Lin
,
M.-W.
Chu
,
I.
Suzuki
, and
Y.
Shimakawa
, “
Perpendicular magnetic tunnel junctions based on half-metallic NiCo2O4
,”
Appl. Phys. Lett.
117
,
042408
(
2020
).
8.
B.
Dieny
and
M.
Chshiev
, “
Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications
,”
Rev. Mod. Phys.
89
,
025008
(
2017
).
9.
J.
Zhang
,
X. G.
Zhang
, and
X. F.
Han
, “
Spinel oxides: Δ 1 spin-filter barrier for a class of magnetic tunnel junctions
,”
Appl. Phys. Lett.
100
,
222401
(
2012
).
10.
H.
Sukegawa
,
Y.
Miura
,
S.
Muramoto
,
S.
Mitani
,
T.
Niizeki
,
T.
Ohkubo
,
K.
Abe
,
M.
Shirai
,
K.
Inomata
, and
K.
Hono
, “
Enhanced tunnel magnetoresistance in a spinel oxide barrier with cation-site disorder
,”
Phys. Rev. B
86
,
184401
(
2012
).
11.
Y.
Miura
,
S.
Muramoto
,
K.
Abe
, and
M.
Shirai
, “
First-principles study of tunneling magnetoresistance in Fe/MgAl2O4/Fe(001) magnetic tunnel junctions
,”
Phys. Rev. B
86
,
024426
(
2012
).
12.
M.
Bibes
,
J. E.
Villegas
, and
A.
Barthelemy
, “
Ultrathin oxide films and interfaces for electronics and spintronics
,”
Adv. Phys.
60
,
5
(
2011
).
13.
P.
Silwal
,
L.
Miao
,
I.
Stern
,
X.
Zhou
,
J.
Hu
, and
D. H.
Kim
, “
Metal insulator transition with ferrimagnetic order in epitaxial thin films of spinel NiCo2O4
,”
Appl. Phys. Lett.
100
,
032102
(
2012
).
14.
P.
Silwal
,
L.
Miao
,
J.
Hu
,
L.
Spinu
,
D. H.
Kim
, and
D.
Talbayev
, “
Thickness dependent structural, magnetic, and electronic properties of the epitaxial films of transparent conducting oxide NiCo2O4
,”
J. Appl. Phys.
114
,
103704
(
2013
).
15.
K.
Dileep
,
B.
Loukya
,
P.
Silwal
,
A.
Gupta
, and
R.
Datta
, “
Probing optical band gaps at nanoscale from tetrahedral cation vacancy defects and variation of cation ordering in NiCo2O4 epitaxial thin films
,”
J. Phys. D
47
,
405001
(
2014
).
16.
Y.
Bitla
,
Y. Y.
Chin
,
J. C.
Lin
,
C. N.
Van
,
R.
Liu
,
Y.
Zhu
,
H. J.
Liu
,
Q.
Zhan
,
H. J.
Lin
,
C. T.
Chen
 et al., “
Origin of metallic behavior in NiCo2O4 ferrimagnet
,”
Sci. Rep.
5
,
15201
(
2015
).
17.
C. M.
Zhen
,
X. Z.
Zhang
,
W. G.
Wei
,
W. Z.
Guo
,
A.
Pant
,
X. S.
Xu
,
J.
Shen
,
L.
Ma
, and
D. L.
Hou
, “
Nanostructural origin of semiconductivity and large magnetoresistance in epitaxial NiCo2O4/Al2O3 thin films
,”
J. Phys. D
51
,
145308
(
2018
).
18.
Y.
Shen
,
D.
Kan
,
Z.
Tan
,
Y.
Wakabayashi
, and
Y.
Shimakawa
, “
Tuning of ferrimagnetism and perpendicular magnetic anisotropy in NiCo2O4 epitaxial films by the cation distribution
,”
Phys. Rev. B
101
,
094412
(
2020
).
19.
L.
Zhang
,
X.
Jiang
,
X.
Xu
, and
X.
Hong
, “
Abrupt enhancement of spin–orbit scattering time in ultrathin semimetallic SrIrO3 close to the metal–insulator transition
,”
APL Mater.
8
,
051108
(
2020
).
20.
R.
Scherwitzl
,
S.
Gariglio
,
M.
Gabay
,
P.
Zubko
,
M.
Gibert
, and
J. M.
Triscone
, “
Metal-insulator transition in ultrathin LaNiO3 films
,”
Phys. Rev. Lett.
106
,
246403
(
2011
).
21.
D.
Groenendijk
,
C.
Autieri
,
J.
Girovsky
,
M. C.
Martinez-Velarte
,
N.
Manca
,
G.
Mattoni
,
A.
Monteiro
,
N.
Gauquelin
,
J.
Verbeeck
, and
A. F.
Otte
, “
Spin-orbit semimetal SrIrO3 in the two-dimensional limit
,”
Phys. Rev. Lett.
119
,
256403
(
2017
).
22.
X.
Hong
,
A.
Posadas
, and
C. H.
Ahn
, “
Examining the screening limit of field effect devices via the metal-insulator transition
,”
Appl. Phys. Lett.
86
,
142501
(
2005
).
23.
P. J.
Metaxas
,
J. P.
Jamet
,
A.
Mougin
,
M.
Cormier
,
J.
Ferre
,
V.
Baltz
,
B.
Rodmacq
,
B.
Dieny
, and
R. L.
Stamps
, “
Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy
,”
Phys. Rev. Lett.
99
,
217208
(
2007
).
24.
J.
Xia
,
W.
Siemons
,
G.
Koster
,
M. R.
Beasley
, and
A.
Kapitulnik
, “
Critical thickness for itinerant ferromagnetism in ultrathin films of SrRuO3
,”
Phys. Rev. B
79
,
140407
(
2009
).
25.
M.
Huijben
,
L. W.
Martin
,
Y. H.
Chu
,
M. B.
Holcomb
,
P.
Yu
,
G.
Rijnders
,
D. H. A.
Blank
, and
R.
Ramesh
, “
Critical thickness and orbital ordering in ultrathin La0.7Sr0.3MnO3 films
,”
Phys. Rev. B
78
,
094413
(
2008
).
26.
M.
Bonilla
,
S.
Kolekar
,
Y.
Ma
,
H. C.
Diaz
,
V.
Kalappattil
,
R.
Das
,
T.
Eggers
,
H. R.
Gutierrez
,
M.-H.
Phan
, and
M.
Batzill
, “
Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates
,”
Nat. Nanotechnol.
13
,
289
(
2018
).
27.
D. J.
O'Hara
,
T.
Zhu
,
A. H.
Trout
,
A. S.
Ahmed
,
Y. K.
Luo
,
C. H.
Lee
,
M. R.
Brenner
,
S.
Rajan
,
J. A.
Gupta
,
D. W.
McComb
 et al., “
Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit
,”
Nano Lett.
18
,
3125
(
2018
).
28.
B.
Li
,
Z.
Wan
,
C.
Wang
,
P.
Chen
,
B.
Huang
,
X.
Cheng
,
Q.
Qian
,
J.
Li
,
Z.
Zhang
,
G.
Sun
 et al., “
Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order
,”
Nat. Mater.
20
,
818
(
2021
).
29.
B.
Huang
,
G.
Clark
,
E.
Navarro-Moratalla
,
D. R.
Klein
,
R.
Cheng
,
K. L.
Seyler
,
D.
Zhong
,
E.
Schmidgall
,
M. A.
McGuire
,
D. H.
Cobden
 et al., “
Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
,”
Nature
546
,
270
(
2017
).
30.
X.
Cai
,
T.
Song
,
N. P.
Wilson
,
G.
Clark
,
M.
He
,
X.
Zhang
,
T.
Taniguchi
,
K.
Watanabe
,
W.
Yao
,
D.
Xiao
 et al., “
Atomically thin CrCl3: An in-plane layered antiferromagnetic insulator
,”
Nano Lett.
19
,
3993
(
2019
).
31.
Z.
Fei
,
B.
Huang
,
P.
Malinowski
,
W.
Wang
,
T.
Song
,
J.
Sanchez
,
W.
Yao
,
D.
Xiao
,
X.
Zhu
,
A. F.
May
 et al., “
Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2
,”
Nat. Mater.
17
,
778
(
2018
).
32.
Y.
Deng
,
Y.
Yu
,
Y.
Song
,
J.
Zhang
,
N. Z.
Wang
,
Z.
Sun
,
Y.
Yi
,
Y. Z.
Wu
,
S.
Wu
,
J.
Zhu
 et al., “
Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2
,”
Nature
563
,
94
(
2018
).
33.
C.
Gong
,
L.
Li
,
Z.
Li
,
H.
Ji
,
A.
Stern
,
Y.
Xia
,
T.
Cao
,
W.
Bao
,
C.
Wang
,
Y.
Wang
 et al., “
Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals
,”
Nature
546
,
265
(
2017
).
34.
A. K.
Geim
and
I. V.
Grigorieva
, “
Van der Waals heterostructures
,”
Nature
499
,
419
(
2013
).
35.
H. Y.
Hwang
,
Y.
Iwasa
,
M.
Kawasaki
,
B.
Keimer
,
N.
Nagaosa
, and
Y.
Tokura
, “
Emergent phenomena at oxide interfaces
,”
Nat. Mater.
11
,
103
(
2012
).
36.
X. G.
Chen
,
X.
Zhang
,
M. A.
Koten
,
H. H.
Chen
,
Z. Y.
Xiao
,
L.
Zhang
,
J. E.
Shield
,
P. A.
Dowben
, and
X.
Hong
, “
Interfacial charge engineering in ferroelectric-controlled Mott transistors
,”
Adv. Mater.
29
,
1701385
(
2017
).
37.
S.
Onoda
,
N.
Sugimoto
, and
N.
Nagaosa
, “
Quantum transport theory of anomalous electric, thermoelectric, and thermal Hall effects in ferromagnets
,”
Phys. Rev. B
77
,
165103
(
2008
).
38.
T.
Fukumura
,
H.
Toyosaki
,
K.
Ueno
,
M.
Nakano
,
T.
Yamasaki
, and
M.
Kawasaki
, “
A scaling relation of anomalous Hall effect in ferromagnetic semiconductors and metals
,”
Jpn. J. Appl. Phys., Part 2
46
,
L642
(
2007
).
39.
A. A.
Kovalev
,
J.
Sinova
, and
Y.
Tserkovnyak
, “
Anomalous Hall effect in disordered multiband metals
,”
Phys. Rev. Lett.
105
,
036601
(
2010
).
40.
S.
Onoda
,
N.
Sugimoto
, and
N.
Nagaosa
, “
Intrinsic versus extrinsic anomalous Hall effect in ferromagnets
,”
Phys. Rev. Lett.
97
,
126602
(
2006
).
41.
A. A.
Burkov
and
L.
Balents
, “
Anomalous Hall effect in ferromagnetic semiconductors in the hopping transport regime
,”
Phys. Rev. Lett.
91
,
057202
(
2003
).
42.
X.-J.
Liu
,
X.
Liu
, and
J.
Sinova
, “
Scaling of the anomalous Hall effect in the insulating regime
,”
Phys. Rev. B
84
,
165304
(
2011
).
43.
X.
Hong
,
S. H.
Cheng
,
C.
Herding
, and
J.
Zhu
, “
Colossal negative magnetoresistance in dilute fluorinated graphene
,”
Phys. Rev. B
83
,
085410
(
2011
).
You do not currently have access to this content.